Watch Out! Drug Drug Interactions with Antiretrovirals

Amber Ladak
PharmD, AAHIVP

Vanderbilt University School of Medicine is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. Vanderbilt University School of Medicine designates this live activity for a maximum 1.0 AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Anna Person, MD, CME Activity Director, has no financial relationships related to the content of this activity to disclose. Trisha Arnold, presenter, has no financial relationships related to the content of this activity to disclose.

This educational activity received no commercial support.
Objectives

1. Review basic principles of pharmacokinetics
2. Describe interaction potential of common antiretrovirals
3. Identify common drug-drug interactions with antiretrovirals
Disclaimer

- This is a review of selected drug-drug interactions (DDI) with antiretrovirals (ARVs) and proposed management. Always consider the risk vs. benefit for individual therapies.
What’s the goal of medications?

- My motto:

 “If I have to take a medication, it better work”

- What is the ultimate goal of utilizing drugs?
 - Maximal effect, minimal toxicities
 - Balancing the decision to use a drug between potential effect and potential adverse effects/complication/toxicity
Polling Question - 1

Which of the following are potential outcomes of a drug-drug interaction?

a. Viral breakthrough
b. Night terrors
c. Hypotension
d. Rash
e. A & C
Pharmacokinetic Basics

- **Pharmacokinetics**: “What a body does to a drug”
 - Onset, duration, intensity of drug’s effect

- **Pharmacodynamics**: “What a drug does to the body”
 - Observed effect of drug
Pharmacokinetic Basics

- Clinical Pharmacokinetics:
 - Enhancing efficacy, decreasing toxicity
 - Determining optimal concentration of drug for desired effect
Pharmacokinetic Basics

- Absorption
- Distribution
- Metabolism
- Excretion

Depends on patient specific factors + chemical properties

- Ex: renal function
Pharmacokinetic Basics

- Metabolism
 - CYP450 System
 - Substrate
 - Substance/drug that is metabolized by a certain enzyme
 - Inducer
 - Usually means: Drug is being metabolized faster, and will leave the body quicker, having less time to exert its effects
 - Ex: efavirnez moderately induces CYP3A4
 - Inhibitor
 - Usually means: Drug is NOT being metabolized at usual rate...will stay in body longer, will have increased effects/side effects
 - Different if drug is pro-drug.
 - Ex: cobicistat, ritonavir are both strong CYP3A4 inhibitors
Drug Metabolism Interactions

- CYP SUBSTRATE
- CYP INHIBITOR

- RISK OF TOXICITY

- CYP SUBSTRATE
- CYP INDUCER

- SUBSTRATE
- SUBSTRATE EFFICACY

- CYP SUBSTRATE
- CYP SUBSTRATE

- SUBSTRATE
- IN EFFICACY OR TOXICITY
Potential Consequences of DDI

- Increased concentration = potentially increased toxicity/side effects
- Decreased concentration = potentially reduced efficacy
 - Viral breakthrough
Polling Question - 2

Patient DC is a male to female transgender patient who is new to your clinic. You bring up the topic of starting ARVs and she immediately states that she doesn’t want to take ARVs because she will be starting hormone replacement therapy (HRT) soon at the Equality Clinic. Her CD4 count is 576 and VL is 56,000. How do you respond?

a. Tell her she’s right to not want to start ARV therapy because it is contraindicated with HRT
b. Tell her we can wait to start her ARV therapy until after she’s completed her transition
c. Tell her the current recommendations support starting antiretroviral therapy, and we can work around her HRT.
Hormone Replacement Therapy & ARVs

- Aging population and transgender population
 - Also – hormonal contraception!
- HIV treatment is not a contraindication to hormone replacement therapy (HRT)
 - HRT may be a motivation for them to adhere to HIV therapy
- Always important to fully reconcile patient’s medication list!
Hormone Replacement Therapy & ARVs

<table>
<thead>
<tr>
<th>Hormone or related therapy</th>
<th>Interaction w/ ARV?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spironolactone</td>
<td>No major DDI w/ ARVs Caution w/ Bactrim – risk of hyperkalemia</td>
</tr>
<tr>
<td>Progesterone -major 3A4 substrate</td>
<td>↓progesterone d/t EFV (3A4 inducer) May ↑ ritonovir concentrations</td>
</tr>
<tr>
<td>Testosterone</td>
<td>No major DDI</td>
</tr>
<tr>
<td>Estrogen / Estradiol</td>
<td>See following slides</td>
</tr>
<tr>
<td>ARV</td>
<td>Effect on Contraceptive</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>NNRTIs</td>
<td></td>
</tr>
<tr>
<td>Efavirenz</td>
<td>Ethinyl Estradiol/Norgestimate:</td>
</tr>
<tr>
<td></td>
<td>• No change in ethinyl estradiol</td>
</tr>
<tr>
<td></td>
<td>• 1 active metabolites of norgestimate</td>
</tr>
<tr>
<td></td>
<td>• levonorgestrel AUC ↓ 83%;</td>
</tr>
<tr>
<td></td>
<td>• norethisterone AUC ↓ 64%</td>
</tr>
<tr>
<td></td>
<td>• Etonogestrel Emergency Contraception:</td>
</tr>
<tr>
<td></td>
<td>• Levonorgestrel AUC ↓ 58%</td>
</tr>
<tr>
<td>Etravirine</td>
<td>Ethinyl estradiol:</td>
</tr>
<tr>
<td></td>
<td>• AUC ↑ 22%</td>
</tr>
<tr>
<td></td>
<td>Norethindrone:</td>
</tr>
<tr>
<td></td>
<td>• No significant change</td>
</tr>
<tr>
<td>Nevirapine</td>
<td>Ethinyl estradiol:</td>
</tr>
<tr>
<td></td>
<td>• AUC ↓ 20%</td>
</tr>
<tr>
<td></td>
<td>Norethindrone:</td>
</tr>
<tr>
<td></td>
<td>• AUC ↓ 19%</td>
</tr>
<tr>
<td></td>
<td>DMPA:</td>
</tr>
<tr>
<td></td>
<td>• No significant change</td>
</tr>
<tr>
<td>Rilpivirine</td>
<td>Ethinyl estradiol:</td>
</tr>
<tr>
<td></td>
<td>• AUC ↑ 14%</td>
</tr>
<tr>
<td></td>
<td>Norethindrone:</td>
</tr>
<tr>
<td></td>
<td>• No significant change</td>
</tr>
</tbody>
</table>
Hormone Replacement Therapy & ARVs

<table>
<thead>
<tr>
<th>ARV</th>
<th>Effect on Contraceptive</th>
<th>Recommendation with Oral Contraceptive</th>
<th>Recommendation with DMPA</th>
<th>Recommendation with Etonogestrel Implant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritonavir Boosted Protease Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atazanavir/rtv</td>
<td>Ethinyl estradiol: • AUC ↓ 19% Norgestimate: • AUC ↑ 85%</td>
<td>Use alternative or additional contraceptive method.</td>
<td>No additional contraceptive needed.</td>
<td>Consider alternative method or reliable barrier contraception in addition.</td>
</tr>
<tr>
<td>Darunavir/rtv</td>
<td>Ethinyl estradiol: • AUC ↓ 44% Norethindrone: • AUC ↓ 14%</td>
<td>Use alternative or additional contraceptive method.</td>
<td>No additional contraceptive needed.</td>
<td>Consider alternative method or reliable barrier contraception in addition.</td>
</tr>
<tr>
<td>Fosamprenavir/rtv</td>
<td>Ethinyl estradiol: • AUC ↓ 37% Norethindrone: • AUC ↓ 34%</td>
<td>Use alternative or additional contraceptive method.</td>
<td>No additional contraceptive needed.</td>
<td>Consider alternative method or reliable barrier contraception in addition.</td>
</tr>
<tr>
<td>Lopinavir/rtv</td>
<td>Ethinyl estradiol: • AUC ↓ 42% Norethindrone: • AUC ↓ 17%</td>
<td>Use alternative or additional contraceptive method.</td>
<td>No additional contraceptive needed.</td>
<td>Consider alternative method or reliable barrier contraception in addition.</td>
</tr>
</tbody>
</table>
Hormone Replacement Therapy & ARVs

<table>
<thead>
<tr>
<th>ARV</th>
<th>Effect on Contraceptive</th>
<th>Recommendation for Oral Contraceptive</th>
<th>Recommendation for DMPA</th>
<th>Recommendation for Etonogestrel Implant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrase Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raltegravir</td>
<td>No significant effect</td>
<td>No additional contraceptive needed.</td>
<td>No additional contraceptive needed</td>
<td>No additional contraceptive needed</td>
</tr>
<tr>
<td>Dolutegravir</td>
<td>No significant effect on norgestimate or ethinyl estradiol</td>
<td>No additional contraceptive needed.</td>
<td>No additional contraceptive needed</td>
<td>No additional contraceptive needed</td>
</tr>
<tr>
<td>Elvitegravir/cobicistat</td>
<td>Ethinyl Estradiol: • AUC ↑ 25%</td>
<td>No additional contraceptive needed.</td>
<td>No additional contraceptive needed</td>
<td>No additional contraceptive needed</td>
</tr>
<tr>
<td></td>
<td>Noregestimate: • AUC ↑ 230%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hepatitis C

- Hepatitis C therapy recommendations do not differ for HIV positive patients
- Always check for interactions when first considering a hepatitis C regimen, may need to change antiretrovirals.
 - Hep C therapy is temporary.
Hepatitis C

“Combined treatment of HIV and HCV can be complicated by drug-drug interactions, increased pill burden, and toxicities. Although ART should be initiated for all HCV/HIV-coinfected patients regardless of CD4 cell count, in ART-naive patients with CD4 counts >500 cells/mm³ some clinicians may choose to defer ART until HCV treatment is completed (CIII).”
Table. Drug Interactions Between Direct-Acting Antivirals and Antiretroviral Drugs

hcvguidelines.org – “Unique Patient Populations: Patients with HIV/HCV Coinfection
Table. Drug Interactions Between Direct-Acting Antivirals and Antiretroviral Drugs

hcvguidelines.org – “Unique Patient Populations: Patients with HIV/HCV Coinfection

<table>
<thead>
<tr>
<th>Drug</th>
<th>Sofosbuvir</th>
<th>Ledipasvir</th>
<th>Velpatasvir</th>
<th>Simeprevir</th>
<th>Elbasvir</th>
<th>Taf/TVDR</th>
<th>PRD</th>
<th>Raltegravir</th>
<th>Maraviroc</th>
<th>Tenofovir disoproxil fumarate</th>
<th>Tenofovir alafenamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raltegravir</td>
<td>↓↑</td>
<td>↓↑</td>
<td>↓↑</td>
<td>↓↑</td>
<td>No data</td>
<td>Elbasvir ↓↑</td>
<td>PRD</td>
<td>Raltegravir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobimetral-boostered elvitegravir</td>
<td>↓↑; cobimetral ↑</td>
<td>Ledipasvir ↑; cobimetral ↑</td>
<td>Velpatasvir ↓↑; cobimetral ↑</td>
<td>No data</td>
<td>No data</td>
<td>Elbasvir ↑; grazoprevir ↑; cobimetral ↑</td>
<td>No data</td>
<td>No data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolutegravir</td>
<td>No data</td>
<td>Ledipasvir ↓↑; dolutegravir</td>
<td>Velpatasvir ↓↑; dolutegravir</td>
<td>No data</td>
<td>Daclatasvir ↓; dolutegravir</td>
<td>Elbasvir ↓↑; grazoprevir ↓↑; dolutegravir</td>
<td>Paritaprevir ↓↑; dolutegravir</td>
<td>No data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maraviroc</td>
<td>No data</td>
<td></td>
</tr>
<tr>
<td>Tenofovir disoproxil fumarate</td>
<td>Sofosbuvir ↓↑; tenofovir ↑</td>
<td>Ledipasvir ↓↑; tenofovir ↑</td>
<td>Velpatasvir ↓↑; tenofovir ↑</td>
<td>Simeprevir ↓↑; tenofovir ↑</td>
<td>Daclatasvir ↓↑; tenofovir ↑</td>
<td>Elbasvir ↓↑; grazoprevir ↓↑; tenofovir ↑</td>
<td>Pro/OD ↓↑; tenofovir</td>
<td>Pro ↓↑; tenofovir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenofovir alafenamide</td>
<td>Sofosbuvir ↑; tenofovir ↑</td>
<td>Ledipasvir ↓↑; tenofovir ↑</td>
<td>Velpatasvir ↓↑; tenofovir ↑</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a Only problematic when administered with tenofovir disoproxil fumarate; tenofovir levels are increased.
- b Decrease daclatasvir dose to 30 mg once daily with atazanavir; increase daclatasvir dose to 90 mg once daily with efavirenz or etravirine.
- c PrOD administered with efavirenz led to premature study discontinuation owing to toxic effects.
- d Studied as part of fixed-dose combinations with ledipasvir/sofosbuvir or sofosbuvir/velpatasvir plus TAF, emtricitabine, elvitegravir, and cobimetral.
Hepatitis C Therapy & ARVs

- Great reference:
 - hcvguidelines.org
 - Information is being constantly being updated
Polling Question - 3

Which of the following is \textit{contraindicated}?

a. Fluticasone and Reyataz (atazanavir)
b. Metformin and Tivicay (dolutegravir)
c. Ibuprofen and Viread (tenofovir)
d. Ranitidine and Edurant (rilpivirine)
Over-the-Counter Meds & ARVs

- Fluticasone and norvir
 - Potentially severe drug interaction, often overlooked
 - Flonase is quite popular, particularly during allergy season
 - Many people end up taking chronically
 - Now, OTC!
Over-the-Counter Meds & ARVs

- Fluticasone and Norvir
 - Likely mechanism of this drug interaction is via CYP450 enzyme system
 - Fluticasone = CYP3A4 substrate
 - Ritonavir = strong CYP3A4 inhibitor
 - Fluticasone **AUC increased > 300-fold** when intranasal spray (200mg) used daily with ritonavir (100mg) for 7 days.
 - Plasma cortisol decreased ~86% (adrenal gland suppression d/t exogenous fluticasone?)
 - Cushing’s – like – syndrome
Over-the-Counter Meds & ARVs

- Fluticasone and Norvir
 - Other potential interactions:
 - Prezista = strong CYP3A4 inhibitor
 - Cobicistat = strong CYP3A4 inhibitor
 - Ritonavir is the drug with the strongest warning, really a contraindication
 - Others from above require caution, monitoring
 - A significant interaction is not anticipated with moderate CYP3A4 inhibitors
Over-the-Counter Meds & ARVs

- Fluticasone containing products:
 - Intranasal
 - Flonase
 - Veramyst
 - Inhaled
 - Flovent
 - Advair - fluticasone + salmeterol (also 3A4 substrate)
Over-the-Counter Meds & ARVs

- Fluticasone – Alternative Options
 - Beclomethasone
 - Beconase (nasal)
 - Qvar (inhaled)
 - Triamcinolone
 - Nasacort (nasal)
- Budesonide – still has drug interaction potential!
 - Rhinocort AQ (nasal)
 - Pulmicort (inhaled)
Polling Question -

JJ is here for a regular ID follow-up appointment. He reports he’s been wonderful, and remains stable on atazanavir, ritonavir, and emtricitabine/tenofovir. His only complaint today is that he’s been having heartburn lately and asks you what he should take. Which of the following is not an appropriate recommendation for your patient?

a. Tums
b. Omeprazole
c. Ranitidine
d. None of the above are appropriate
Interactions with Acid Reducing Agents

- Widely used, widely available, not widely reported on med list
- Many, varying interactions with ARVs.
Acid Reducing Agents and ARVs

<table>
<thead>
<tr>
<th>Medication</th>
<th>Antacids</th>
<th>H2 Blockers</th>
<th>Proton Pump Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tums, Maalox</td>
<td>Zantac (ranitidine), Pepcid (famotidine)</td>
<td>Prilosec (omprazole), Nexum (esomeprazole)</td>
</tr>
<tr>
<td>Rilpivirine</td>
<td>Give antacids 2 hours before or 4 hours after RPV</td>
<td>RPV AUC ↓ 76% 2H after famotidine 40mg dose</td>
<td>CONTRAINDICATED!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Give H2-blocker 12 hours before or 4 hours after RPV</td>
<td>RPV AUC ↓ 40% w/ omeprazole 20mg daily</td>
</tr>
</tbody>
</table>

Can get confusing and cumbersome for patients. Also consider that rilpivirine needs to be taken with a full meal. Counsel on avoiding trigger foods, not eating too close to bedtime, etc.
Acid Reducing Agents and ARVs

<table>
<thead>
<tr>
<th>Medication</th>
<th>Antacids</th>
<th>H2 Blockers</th>
<th>Proton Pump Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tums Maalox</td>
<td>Zantac (ranitidine) Pepcid (famotidine)</td>
<td>Prilosec (omprazole) Nexum (esomeprazole)</td>
</tr>
<tr>
<td>Atazanavir/r</td>
<td>Give ATV at least 2 hours before or 2 hours after antacid, do not give simultaneously</td>
<td>Take ATZ/r simultaneously or 10 hours after</td>
<td>ATZ ↓ 94% ATZ/r ↓ 76% *must use boosted ATZ. If medically necessary, separate by 12 hours. Do not exceed omeprazole 20mg dose equivalent.</td>
</tr>
<tr>
<td>Darunavir</td>
<td>No significant effect, no dosing adjustment needed</td>
<td>No significant effect, no dosing adjustment needed</td>
<td>w/ ritonavir: omeprazole AUC ↓ 42% No significant effect, no dosing adjustment needed</td>
</tr>
</tbody>
</table>

Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents
Table 19a-e: Drug Interactions
Acid Reducing Agents and ARVs

<table>
<thead>
<tr>
<th>Medication</th>
<th>Antacids</th>
<th>H2 Blockers</th>
<th>Proton Pump Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tums</td>
<td>Zantac (ranitidine)</td>
<td>Prilosec (omeprazole)</td>
</tr>
<tr>
<td></td>
<td>Maalox</td>
<td>Pepcid (famotidine)</td>
<td>Nexum (esomeprazole)</td>
</tr>
<tr>
<td></td>
<td>Al, Mg, Ca salts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raltegravir</td>
<td>Al-Mg Hydroxide Antacid: RAL (C_{\text{min}}) ↓ 54% to 63% (\text{CaCO}3) Antacid: RAL (C{\text{min}}) ↓ 32% DO NOT COADMINISTER Al/Mg ANTACIDS</td>
<td>No significant effect, no dosing adjustment needed</td>
<td>RAL AUC ↑ 212% and (C_{\text{min}}) ↑ 46% No dosing adjustment needed</td>
</tr>
<tr>
<td></td>
<td>CACO3 Antacids Ok</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolutegravir</td>
<td>DTG AUC ↓ 74% if given simultaneously with antacid; DTG AUC ↓ 26% if given 2 hours before antacid Take DTG 2h before or 6h after Or, take at the same time with food.</td>
<td>No significant effect, no dosing adjustment needed</td>
<td>No significant effect, no dosing adjustment needed</td>
</tr>
<tr>
<td>Elvitegravir/c</td>
<td>Separate by at least 2h</td>
<td>No significant effect, no dosing adjustment needed</td>
<td>No significant effect, no dosing adjustment needed</td>
</tr>
</tbody>
</table>
Miscellaneous Interactions -

- Medications for erectile dysfunction
 - Sildenafil
 - w/ PIs: start with 25mg every 48 hours
 - Tadalafil
 - w/ PIs: Do not exceed 10mg every 72 hours

- Statins
 - Lovastatin
 - Contraindicated with PIs due to significantly increased levels of lovastatin
 - Simvastatin
 - Atorvastatin – usually OK, start at lowest dose, and titrate
 - Rosuvastatin
Miscellaneous Interactions -

- Interactions w/ other ARVs?
 - Ritonovir & cobicistat: pharmacokinetic boosters
- Illicit drugs?
 - Methadone
- Dolutegravir
 - Carbamazepine – induces dolutegravir metabolism, increase to BID dosing
 - Metformin – Do Not Exceed 500mg BID of metformin
Tips and Tricks

- Always check for drug-drug interactions with ARVs
 - Counsel patients to inform their other providers of all the meds they are on
 - Include OTC products!
- Get to know interaction profile
 - i.e. cobicistat is a strong CYP3A4 inhibitor = many interactions!
- Utilize your resources
- Regularly reconcile med list in your EMR
- Not all interactions require adjustment/change
Where to find information

- Your pharmacist 😊
- DHHS Guidelines
 - www.aidsinfo.gov
- Package Inserts
- Drug Information Database
 - Ex: Lexi-Comp
- Drug Interaction Checkers
 - Micromedex, Lexi-Comp, Epocrates
- University of Liverpool
 - HIV: http://www.hiv-druginteractions.org/
 - Hep C: http://www.hep-druginteractions.org/
Questions?
That's all Folks!