Pharmacologic Considerations of HCV Treatment

Autumn D. Bagwell, PharmD, BCPS, AAHIVP
Objectives

- Review pharmacokinetic properties of currently utilized Hepatitis C medications
- Review drug interactions and drug elimination considerations resulting from pharmacokinetic properties
- Discuss practical management of drug interactions and drug elimination
Pharmacokinetics: Quick Review

- “Movement of drugs”
- Study of the relationship between dose, amount of drug in the body and therapeutic or toxic effects of a drug
- Pharmacokinetic data helps us understand:
 - Dose and schedule
 - Dose adjustments due to drug interactions and other issues

Slide modified courtesy of Ryan Moss, PharmD
Pharmacokinetics: Quick Review

Absorption
- Drug enters the blood
- Drug travels in the blood
- Drug disbursement in the body

Distribution
- Drug travels in the blood
- Drug disbursement in the body
- Body changes the drug
- Usually in intestine or liver

Metabolism
- Kidneys through urine
- Liver through stool

Excretion
Pharmacokinetics: Quick Review

CYP 3A4 Inhibitors
- Azole antifungals
- Protease inhibitors
- Ritonavir
- Calcium Channel Blockers (CCBs)
- Clarithromycin
- Nefazodone
- Telithromycin

CYP3A4 Inducers
- Anticonvulsants
- Rifamycins
- St Johns Wort
- Non-Nucleoside Reverse Transcriptase Inhibitors
- Modafinil
- Dexamethasone
- Bosentan
- Nafcillin
Pharmacokinetics: Final Review

- Drug Transporters
 - Move drug across membranes
 - Affect absorption, excretion, movement into organs
 - Efflux (ex. P-gp)
 - Uptake (ex. OATP)
- P-gp Inhibitors: azoles, CCBs, PIs, amiodarone
- P-gp Inducers: carbamazepine, rifampin, phenytoin, St Johns Wort
- P-gp Substrates: digoxin, loperamide
- OATP1B1 and BCRP substrate: rosuvastatin
<table>
<thead>
<tr>
<th></th>
<th>Simprevir</th>
<th>Sofosbuvir</th>
<th>Ledipasvir</th>
<th>Delafloxacin</th>
<th>Pirtaprevir, ritonavir, ombitasvir plus dasabuvir (PRDD)</th>
<th>Pirtaprevir, ritonavir, ombitasvir (PVC)</th>
<th>Grazoprevir/elbasvir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritonavir-boosted azacavir</td>
<td>No data</td>
<td>No data</td>
<td>Ledipasvir</td>
<td>Delafloxacin</td>
<td>Pirtaprevir T, ombitasvir T</td>
<td>Grazoprevir T</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ritonavir T, ombitasvir T, enhance (below TDF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ritonavir-boosted dasabuvir</td>
<td>Simprevir T, delafloxacin T</td>
<td>Sofosbuvir T, ledipasvir T</td>
<td>Ledipasvir</td>
<td>Delafloxacin</td>
<td>Pirtaprevir T, ombitasvir T</td>
<td>Grazoprevir T</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ritonavir T, ombitasvir T, enhance (below TDF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ritonavir-boosted lopinavir</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>Delafloxacin</td>
<td>Pirtaprevir T, ombitasvir T</td>
<td>Grazoprevir T</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ritonavir T, ombitasvir T, enhance (below TDF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ritonavir-boosted ritonavir</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>Pirtaprevir T, ombitasvir T</td>
<td>Grazoprevir T</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ritonavir T, ombitasvir T, enhance (below TDF)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Efavirenz

| | Simprevir T, efavirenz | Sofosbuvir T, efavirenz | Ledipasvir | Delafloxacin | No data | Grazeoprevir T | |
| | | | | | pharmacokinetic data | | |

Rilpivirine

| | Simprevir T, rilpivirine | Sofosbuvir T, rilpivirine | Ledipasvir | Delafloxacin | Pirtaprevir T, ombitasvir T | Grazoprevir T | |
| | | | | | ritonavir T, ombitasvir T, enhance (below TDF) | | |

Etravirine

| | No data | No data | Delafloxacin | No data | No data | Grazeoprevir T | |
| | | | | | pharmacokinetic data | | |

Raltegravir

| | Simprevir T, raltegravir | Sofosbuvir T, raltegravir | Ledipasvir | No data | P<0.05, T, raltegravir | Grazoprevir T | |
| | | | | | raltegravir | | |

Cobicistat-boosted elvitegravir

| | No data | Cobicistat T, elvitegravir T | Cobicistat T | Delafloxacin | No data | Grazeoprevir T | |
| | | | | | pharmacokinetic data | | |

Dolutegravir

| | No data | No data | Delafloxacin | No data | No data | Grazeoprevir T | |
| | | | | | pharmacokinetic data | | |

Maraviroc

| | No data | No data | No data | No data | No data | Grazeoprevir T | |
| | | | | | pharmacokinetic data | | |

Tenofovir disoproxil fumarate

| | Simprevir T, tenofovir T, disoproxil T, efavirenz | Sofosbuvir T, tenofovir T, disoproxil T, efavirenz | Ledipasvir | Delafloxacin | P<0.05, T, tenofovir T | Grazeoprevir T | |
| | | | | | tenofovir | | |

Figure 2. Drug interactions between direct-acting antivirals and antiretroviral drugs. Red, combination should not be used; yellow, use with caution or increased monitoring; and green, suitable for coadministration [7]. *Watch renal function, tenofovir levels increased; † Decrease daclatasvir (DCV) dose to 30 mg QD, increase DCV dose to 95 mg QD. Up arrow is an increase in the concentration, down arrow is a decrease in the concentration, and a horizontal arrow means no change in the concentration. Abbreviations: TAF, tenofovir alafenamide; TDF, tenofovir disoproxil fumarate.
Harvoni®: Ledipasvir/Sofosbuvir
Ledipasvir / Sofosbuvir

- **NS5A Inhibitor**
 - **A:**
 - Acid increases absorption
 - P-gp substrate
 - **M:**
 - Oxidation/no CYP
 - Inhibits P-gp & BCRP
 - **E:**
 - Biliary elimination

- **NS5B polymerase inhibitor**
 - **A:**
 - P-gp and BCRP substrate
 - **M:**
 - Hydrolyzed to active molecule
 - Does not inhibit or induce any enzymes
 - **E:**
 - Renal clearance of active metabolite
Ledipasvir/Sofosbuvir

- Avoid P-gp Inducers
 - Anticonvulsants
 - Rifamycins
 - St Johns Wort
- Acid suppressing agents
 - Antacids: 4 hours before/after
 - H2 blockers: take with or 12 hour separation; do not exceed equivalent of famotidine 40mg BID
 - PPIs: take simultaneously while fasting; do not exceed omeprazole 20mg
- Avoid HIV protease inhibitors and tenofovir DF co-administration
- Avoid in severe renal impairment (<30mL/min/1.73m²)
- Avoid amiodarone
- Avoid rosuvastatin
Epclusa®: Velpatasvir/Sofosbuvir
Velpatasvir / Sofosbuvir

NS5A inhibitor
- **A:**
 - Acid increases absorption
 - P-gp substrate
- **M:**
 - Metabolized Via CYP3A4, 2C8, and 2B6
 - Does not inhibit or induce and enzymes
- **E:**
 - Biliary elimination

NS5B polymerase inhibitor
- **A:**
 - P-gp and BCRP substrate
- **M:**
 - Hydrolyzed to active molecule
 - Does not inhibit or induce any enzymes
- **E:**
 - Renal clearance of active metabolite
Velpatasvir/Sofosbuvir

- Avoid P-gp Inducers
 - Anticonvulsants
 - Rifamycins
 - St Johns Wort
- Acid Suppressing medications
 - Antacids: separate by 4 hours
 - H2 blockers: take with or 12 hour separation; do not exceed equivalent of famotidine 40mg BID
 - PPIs: take 4 hours after VEL; do not exceed omeprazole 20mg equivalent
- CYP3A4 inhibitors/inducers
- Avoid HIV protease inhibitor and tenofovir DF co-administration
- Contraindicated with etravirine, efavirenz, nevirapine
- Avoid in severe renal impairment (<30mL/min/1.73m²)
- Avoid amiodarone
- Rosuvastatin: 10mg max dose
Daklinza® + Sovaldi®
daclatasvir + sofosbuvir
Daclatasvir + Sofosbuvir

- NS5A replication complex inhibitor
 - **A:** P-gp substrate
 - **M:** Primarily metabolized by CYP3A4
 - **E:** Biliary elimination

- NS5B polymerase inhibitor
 - **A:** P-gp and BCRP substrate
 - **M:** Hydrolyzed to active molecule
 - **E:** Renal clearance of active metabolite
Daclatasvir + Sofosbuvir

- CYP3A4 inducers
 - Strong: Avoid
 - Moderate: Increase dose to 90mg
- Strong CYP3A4 inhibitors: reduce daclatasvir dose to 30mg*
- Avoid P-gp Inducers
 - Anticonvulsants
 - Rifamycins
 - St Johns Wort
- Avoid in severe renal impairment (<30mL/min/1.73m²)
- Avoid amiodarone
Viekira Pak® and Viekira XR®
OmbitasvirParitaprevir/Ritonavir + Dasabuvir

Ombitasvir / Paritaprevir / Ritonavir

- **NS5A inhibitor**
 - **A:** P-gp substrate
 - **M:** Metabolized via hydrolysis then oxidative metabolism
 - Inhibits CYP2C8, UGT1A1
 - **E:** Biliary elimination

- **NS3 protease inhibitor**
 - **A:** P-gp substrate
 - Inhibits P-gp, OATP1B1/3, BCRP
 - **M:** Metabolized via CYP3A4 and to a lesser extent by CYP3A5
 - Inhibits CYP2C8, UGT1A1
 - **E:** Metabolism

- **Pharmacokinetic enhancer**
 - **A:** P-gp substrate
 - **M:** Metabolized by CYP3A4
 - Strong CYP3A4 inhibitor
 - **E:** Metabolism
Dasabuvir

- Nonnucleoside NS5B polymerase inhibitor
- **A:**
 - Fat increases absorption
 - P-gp substrate
 - Inhibits BCRP
- **M:**
 - Metabolism via CYP2C8, and to a lesser extent by CYP3A
 - Inhibits UGT1A1
- **E:**
 - Metabolism
Ombitasvir/Paritaprevir/ritonavir + Dasabuvir (PrOD)

- Take with food
- Avoid potent CYP3A4 inducers
- Avoid potent CYP3A4 inhibitors
- Avoid Ethinyl estradiol contraceptives
- HMG-CoA Reductase Inhibitors
 - Avoid atorvasatin, simvastatin, and lovastatin
 - Rosuvastatin: max dose 10mg
- Contraindicated HIV medications:
 - Elvitegravir/cobicistat/tenofovir alafenamide or tenofovir disoproxil fumarate
 - Non-Nucleoside Reverse Transcriptase Inhibitors: efavirenz, etravirine, nevirapine
 - Most HIV protease inhibitors
- Quetiapine
- Apixaban
- Contraindicated with moderate to severe hepatic impairment (Child-Pugh B or C)
Zepatier®: Elbasvir/Grazoprevir
Elbasvir / Grazoprevir

- **NS5A inhibitor**
 - **A:**
 - Fat increases absorption
 - P-gp substrate
 - Inhibits P-gp and BCRP
 - **M:**
 - Metabolized via CYP3A4
 - **E:**
 - Metabolism

- **NS3 inhibitor**
 - **A:**
 - Fat increases absorption
 - P-gp substrate
 - Inhibits UGT1A1 and BCRP
 - **M:**
 - Metabolism via CYP3A4
 - **E:**
 - Metabolism
Elbasvir/Grazoprevir

- Take with food
- Avoid P-gp inducers
- Avoid CYP3A4 inducers
- Avoid strong CYP3A4 inhibitors
- Contraindicated HIV medications
 - All HIV protease inhibitors
 - Non-Nucleoside Reverse Transcriptase Inhibitors: efavirenz, etravirine, nevirapine
- Contraindicated with moderate to severe hepatic impairment (Child-Pugh B or C)
- Rosuvastatin: do not exceed 10mg
Simeprevir

- **NS3 protease inhibitor**
- **A:**
 - Food improves absorption
 - P-gp and OATP1B1 inhibitor
- **M:**
 - Metabolized by CYP 3A4
 - Inhibits CYP3A4 (intestinal)
- **E:**
 - Metabolism
Simeprevir

- Avoid in severe hepatic impairment/decompensated cirrhosis
- Avoid strong CYP3A4 inhibitors
- Avoid strong CYP3A4 inducers
- Contraindicated HIV medications
 - All HIV protease inhibitors
 - Non-Nucleoside Reverse Transcriptase Inhibitors: efavirenz, etravirine, nevirapine
- Rosuvastatin: max dose 10mg
Ribavirin

- Purine nucleoside analogue
- **A:** Food improves absorption
- **M:** Minimal metabolism
- **E:** Renal elimination - dose adjust

- Pregnancy category X
Summary/Conclusion

- Due to pharmacokinetic properties of HCV meds, drug interactions are common
- Patients should be screened closely prior to and during treatment for interactions
- Complicated patients (i.e. HIV co-infected, cirrhotic patients, severe renal impairment) require additional considerations
Summary HCV Medication Interactions

- **3A4**
 - Daklinza® (DCV): substrate
 - Viekira Pak® (ritonavir): inhibitor
 - Zepatier® (EBV/GZR): substrates
 - Olysio® (SMV): substrate; mild inhibitor of intestinal CYP3A4
 - Epclusa® (VEL): substrate

- **P-gp**
 - Harvoni®: LDV inhibitor; LDV/SOF substrates
 - Olysio® (SMV): Inhibitor
 - Daklinza® (DCV): inhibitor
 - Sovaldi® (SOF): substrate
 - Zepatier® (EBV/GZR): substrates
 - Epclusa® (VEL/SOF): substrate, VEL inhibitor

- **UGT1A1**
 - Viekira Pak®(OBV/PTVr/DBV): inhibitor

- **OATP 1B1/3**
 - Zepatier® (GZR): substrate
 - Olysio® (SMV): Inhibitor
 - Daklinza® (DCV): Inhibitor
 - Viekira Pak® (PTV): inhibitor
 - Epclusa® (VEL): inhibitor

- **BCRP**
 - Daklinza® (DCV): Inhibitor
 - Harvoni®: LDV inhibitor; LDV/SOF substrates
 - Sovaldi® (SOF): substrate
 - Viekira Pak® (PTVr/DBV): inhibitor
 - Epclusa® (VEL): inhibitor
Summary HCV Medication Interactions

- **Olysio® (simeprevir):**
 - 3A4: substrate; mild inhibitor of intestinal CYP3A4
 - P-gp: inhibitor
 - OATP: Inhibits OATP1B1/3

- **Sovaldi® (sofosbuvir):**
 - P-gp: substrate
 - BCRP: substrate

- **Harvoni® (ledipasvir/sofosbuvir):**
 - P-gp: ledipasvir inhibits; ledipasvir/sofosbuvir are substrates
 - BCRP: ledipasvir inhibits; ledipasvir/sofosbuvir are substrates
 - **Acid-reducing agents**

- **Viekira Pak® (paritaprevir, ombitasvir, dasabuvir, ritonavir):**
 - 3A4: ritonavir: inhibitor
 - UGT1A1: ombitasvir, paritaprevir, and dasabuvir inhibit
 - OATP: paritaprevir inhibits OATP1B1/3
 - BCRP: ritonavir, paritaprevir, and dasabuvir inhibit

- **Daklinza® (daclatasvir):**
 - 3A4 substrate
 - OATP: Inhibits OATP1B1/3
 - P-gp: inhibitor
 - BCRP: inhibitor

- **Zepatier® (elbasvir/grazoprevir):**
 - 3A4: substrates (both)
 - OATP: grazoprevir substrate of OAT1B1/3
 - P-gp: substrates (both)

- **Epclusa® (velpatasvir/sofosbuvir):**
 - P-gp: substrates (both), velpatasvir inhibitor
 - CYP3A4: velpatasvir substrate
 - BCRP: sofosbuvir substrate, velpatasvir inhibitor
 - OATP1B1: velpatasvir inhibitor
Case 1: Steven

- Steven is a 24 year old white male referred to your clinic for HCV evaluation after a recent hospitalization for endocarditis due to IV drug use. He currently takes zolpidem 5mg each evening for sleep, Adderall 5mg daily, and Lisinopril 5mg daily. He also reports occasional use of Tums after a spicy meal. Since his hospitalization, Steven completed rehabilitation and reports that he has not used IV drugs in 6 weeks. He has not received HCV treatment in the past and is eager to be treated. Work up reveals the following:
 - AST 62, ALT 75, Platelets 135,000, INR 1.0
 - HCV RNA 1,004,879 IU/mL
 - HCV GT2
 - Abdominal ultrasound with transient elastography reveals F1-F2 fibrosis
Case 1: Steven

- What treatment strategy do you recommend at this time?
 - Epclusa® (VEL/SOF) x 12 weeks
 - Harvoni® (LDV/SOF) x 8 weeks
 - Harvoni® (LDV/SOF) x 12 weeks
 - Epclusa® (VEL/SOF) x 8 weeks
 - Delaying treatment until you can confirm drug abstinence for >6 months
Case 1: Steven continued

- Steven is approved for the correct treatment listed above. What counseling regarding his current medications would you provide?
Antacids and DAAs

- Epclusa® and Harvoni®
 - H2 Antagonist: simultaneously or 12 hours apart at a maximum equivalent to famotidine 40mg twice daily
 - Antacids: separate by 4 hours
- Proton pump inhibitors:
 - Harvoni®: administer simultaneously under fasted conditions at a maximum equivalent to pantoprazole 40mg
 - Epclusa®: administer VEL/SOF 4 hours before PPI with food at a maximum equivalent to pantoprazole 40mg
Case 2: Patricia

- Patricia is a 38 y/o female referred for HCV evaluation and treatment, who was diagnosed at time of HIV diagnosis in 2005.
- Her PMH includes HIV (last CD4 950 with HIV viral load <20), bipolar disorder, and prior IVDU.
- Workup reveals:
 - AST 35, ALT 65, Platelets 315,000
 - HCV RNA VL 12,500,000
 - GT 1a
 - Elastography consistent with F1-F2 fibrosis
 - Meds: Truvada® (tenofovir DF) + Prezista® (darunavir) and Norvir® (ritonavir), oxcarbazepine, quetiapine

Slide adapted from Cody Chastain, MD
Case 2: Which medication are concerning for potential drug-drug interactions with DAAs?

A. Tenofovir DF
B. Darunavir
C. Ritonavir
D. Oxcarbazepine
E. Quetiapine
HCV Medication Interactions

- Acid-reducing agents
- Anticonvulsants
- Amiodarone, digoxin
- Azole antifungals
- Statins

<table>
<thead>
<tr>
<th>Concurrent Medications</th>
<th>Dadavir</th>
<th>Ledipasvir</th>
<th>Paritaprevi / Ritonavir + Gilcapevi</th>
<th>Simprevi</th>
<th>Sofosbuvir</th>
<th>Velpatasvir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid-reducing agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkali water/formalin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amiodarone</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphotericin</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azole antibiotics</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cations</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium antagonists</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cimetiide</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digoxin</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol derivatives</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl alcohol-containing products</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>A</td>
<td></td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gerifortil</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutethimide</td>
<td>X</td>
<td>X</td>
<td>(inhibited, increased)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydroxychloroquine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itraconazole</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metformin</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protease inhibitors</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ritonavir</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telithromycin</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other antismotics</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphodiesterase inhibitors</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pravastatin</td>
<td>A</td>
<td></td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simvastatin</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statins</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Some drug interactions are not class-specific; see product prescribing information for specific drugs within a class.
**Table values indicate drug modifications.
Questions?

Autumn Bagwell, PharmD, BCPS, AAHIVP
Autumn.D.Bagwell@vanderbilt.edu

Acknowledgements: Ryan Moss, PharmD, AAVHIP