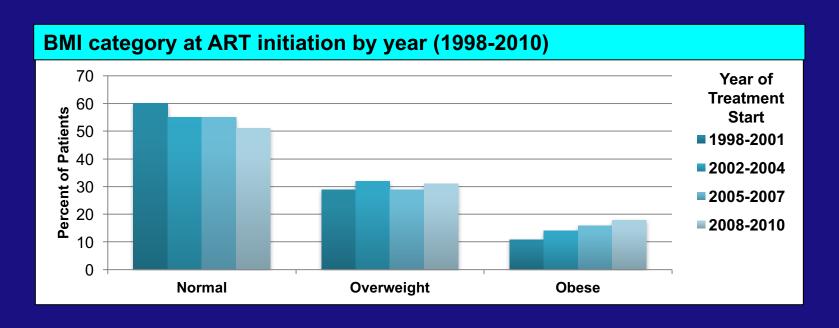
# The Converging Epidemics of HIV and Obesity

**Southeast AETC Webcast Wednesday Series August 16, 2017** 

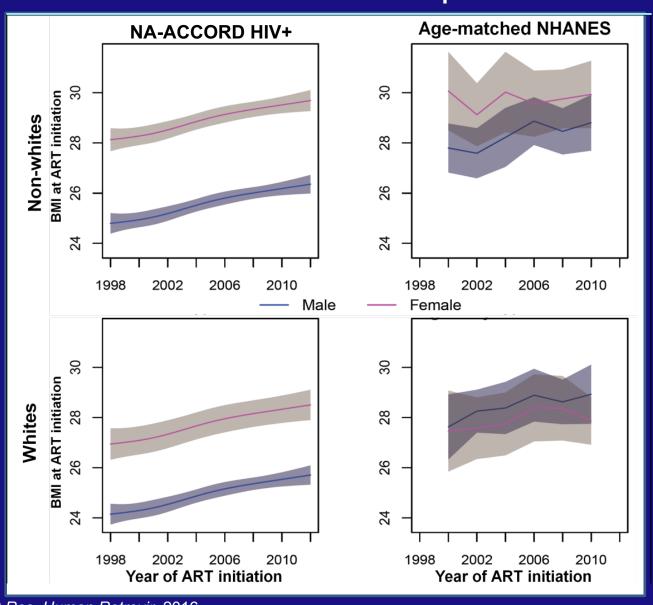
John Koethe MD, MSCI Vanderbilt University Medical Center Division of Infectious Diseases



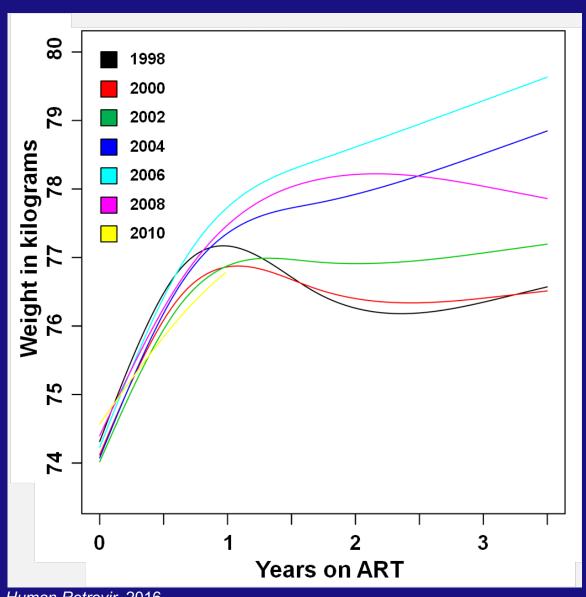
#### Objectives


- Describe changes in obesity prevalence among HIVinfected individuals over the past decade and the groups most affected
- Identify the effects of obesity on cardiometabolic disease risk factors in HIV patients and the major non-infectious comorbidities exacerbated by obesity
- Summarize the disease screening and major cardiometabolic disease treatment considerations in obese HIV patients

#### From pre-ART to HAART: The Nutrition Transition


- HIV-wasting (>10% involuntary weight loss) seen in >30% of patients in pre-ART era and often signaled accelerated disease progression
- Wasting prevalence in HAART era <8% Predictors include injection drug use, homeless,
  food insecurity, and low-income level</li>
- With availability of effective ART, maintenance of healthy weight has become a more pressing issue

# Overweight/Obesity Prevalence among Adults Starting ART in 1998-2010


- 9% of HIV+ patients were obese at ART initiation in 1998, which doubled to 18% in 2010
- After 3 years of ART, 22% of normal BMI patients were overweight, and 18% of the overweight were obese

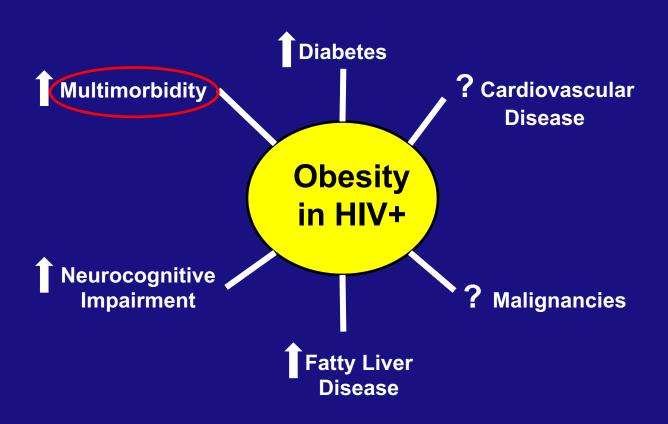


#### BMI at ART Initiation in Persons with HIV Compared to the General US Population



#### Weight Gain Over the First Three Years of ART in 1998 to 2010



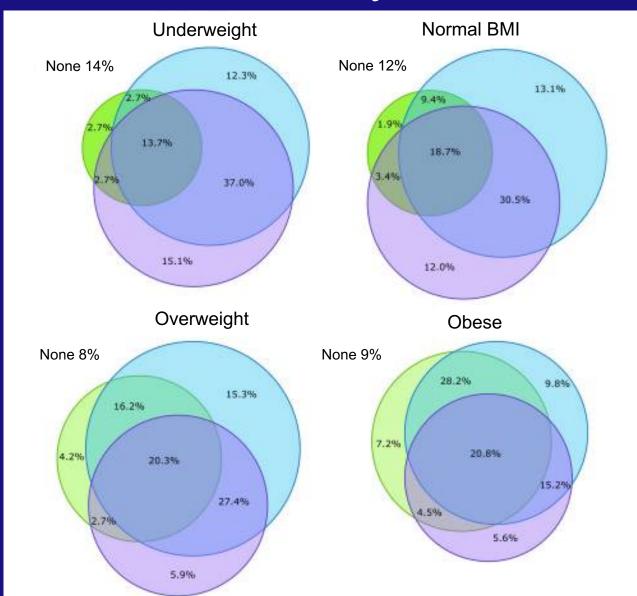

#### Summary: Weight Gain among Patients Starting ART in the United States

- On average, over 80% of total 3-year weight gain occurred in first 12 months
- Overall weight gain was greatest among white men and non-white women
- In the first 3 years of ART:
  - One-quarter of US patients with a normal BMI became overweight
  - One-fifth of those previously overweight became obese
- After 3 years of ART, the average BMI of patients with HIV approaches parity with age-, sex-, and race-matched members of the HIV-negative population

## Non-communicable Diseases Associated with Obesity in HIV+ Persons



# Non-communicable Diseases Associated with Obesity in HIV+ Persons




# A High BMI in Patients on ART is Accompanied by More Multimorbidity

Cluster 1: HTN, diabetes, renal disease

Cluster 2: Dyslipidemia, CVD, sleep apnea, others

Cluster 3: Substance abuse, hepatitis C

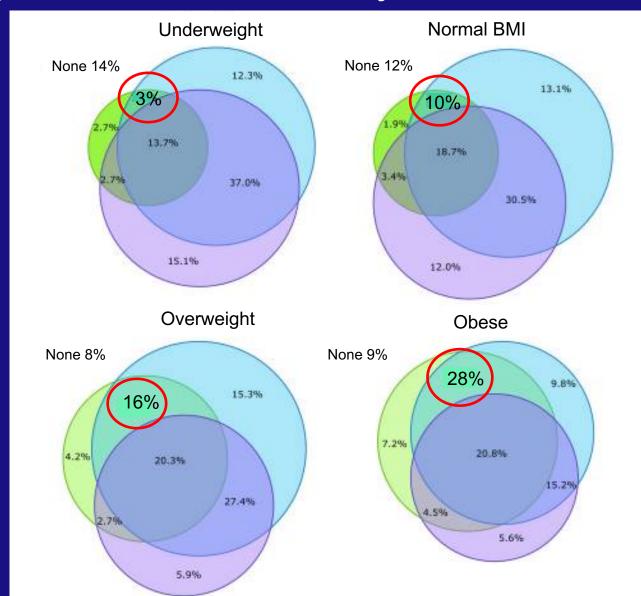


## A High BMI in Patients on ART is Accompanied by more Multimorbidity

Cluster 1: HTN, diabetes, renal disease

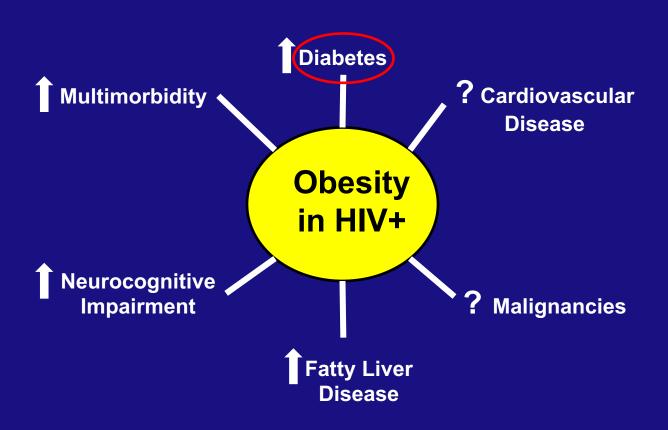
Cluster 2: Dyslipidemia, CVD, sleep apnea, others

Cluster 3: Substance abuse, hepatitis C


Combined prevalence of cluster 1 *and/or* 2 disorders:

Underweight: 17%

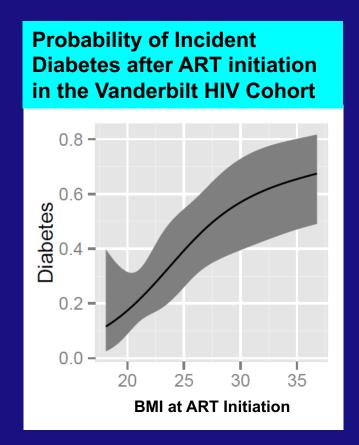
Normal BMI: 29%


Overweight: 36%

Obese 49%



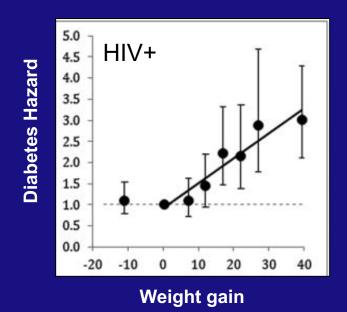
Kim DJ. JAIDS. 2012.

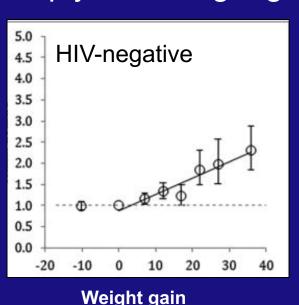

# Non-communicable Diseases Associated with Obesity in HIV+ Persons



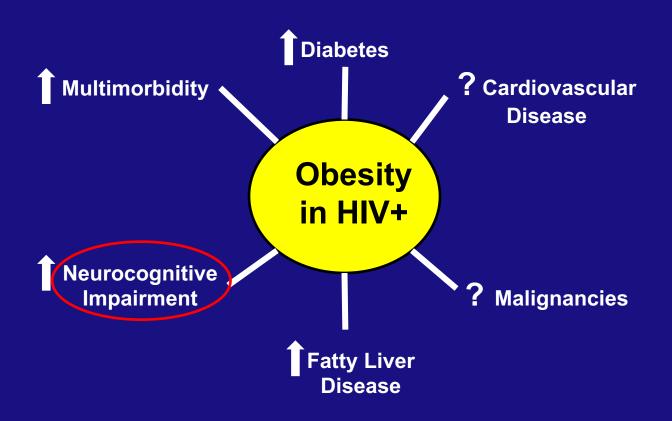
#### Effect of Obesity on Diabetes Risk in Patients on ART

| Risk of Incident Diabetes Diagnosis after ART |
|-----------------------------------------------|
| Initiation in French APROCO-COPILOTE cohort*  |


|                                                 | Multivariate<br>Analysis HR |
|-------------------------------------------------|-----------------------------|
| <25 kg/m <sup>2</sup>                           | 1.0 (ref)                   |
| BMI 25-30                                       | 1.9                         |
| BMI >30                                         | 2.9                         |
| Waist-to-hip ratio ≥0.97 (men) or ≥0.92 (women) | 3.9                         |




#### Diabetes prevalence in persons with HIV rises more steeply at higher BMI compared to HIV-negative....

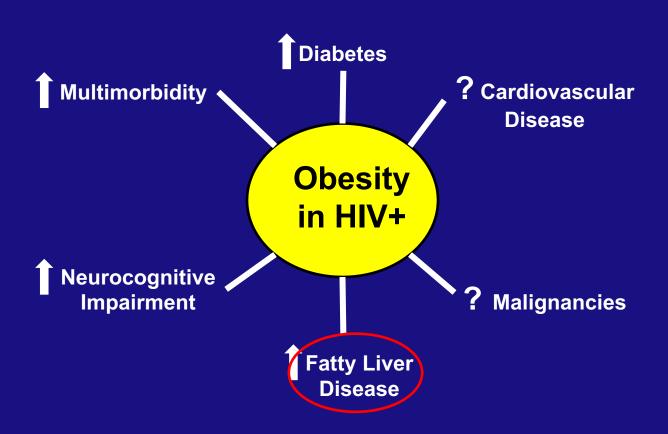

| BMI category          | Diabetes Odds<br>HIV+ | Diabetes Odds<br>HIV-negative |
|-----------------------|-----------------------|-------------------------------|
| <20 kg/m <sup>2</sup> | 1.0                   | 1.0                           |
| 20-24.9               | 1.68                  | 1.20                          |
| 25-29.9               | 2.30                  | 1.70                          |
| ≥ 30                  | 5.35                  | 3.25                          |

#### ...and incidence rises more steeply with weight gain





## Non-communicable Diseases Associated with Obesity in HIV+ Persons

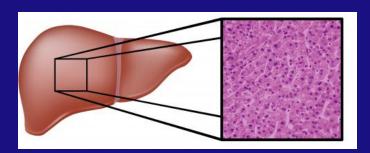



# Effect of Waist Circumference on Neurocognitive Impairment

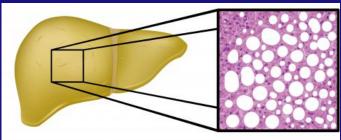
- Mild to severe neurocognitive impairment (NCI) is present in ≈50% patients on ART
- May be due to effects of hyperglycemia, cerebral atherosclerosis, or inflammatory cytokines on local vessels

| Predictors of Neurocognitive Impairment (n=55) |                     |         |  |
|------------------------------------------------|---------------------|---------|--|
| Variable                                       | Adjusted Odds Ratio | p-value |  |
| AIDS                                           | 49.6                | 0.01    |  |
| Diabetes                                       | 17.6                | 0.07    |  |
| Waist circ., cm                                | 1.34                | 0.001   |  |
| Triglycerides, mg/dL                           | 0.32                | 0.09    |  |

## Non-communicable Diseases Associated with Obesity in HIV+ Persons




#### Burden of Fatty Liver Disease in HIV


- Hepatic disease is the second leading cause of non-AIDS death in the D:A:D cohort
- •30-40% fatty liver disease (FLD) prevalence in the HIV+
- •The triad of <u>obesity</u>, <u>glucose intolerance</u>, and <u>high TGs</u> is a major risk, though FLD appears to occur at lower BMI in the HIV population, suggesting other factors are at play.
- •These may include damage to hepatocytes by ART or viral proteins, and effects on adipocytes leading to higher lipolysis and reduced ability to store fatty acids.
- •Even moderate alcohol intake likely contributes to FLD in patients with other risk factors

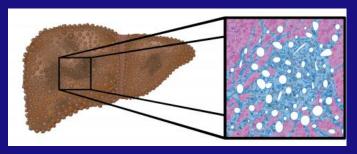
#### Multi-Hit Theory of Fatty Liver Disease in HIV

#### **Normal Liver**

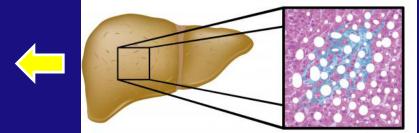






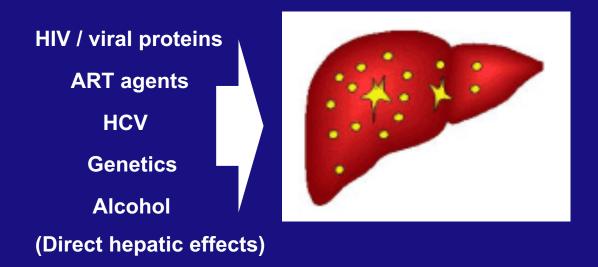

**Steatosis** 

Lipid accumulation Impaired fatty acid transport

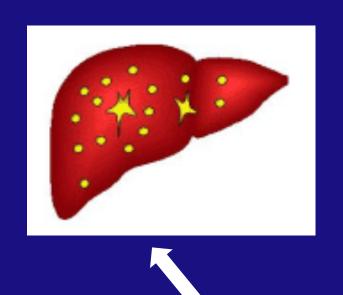



#### **Steatohepatitis**

#### **Cirrhosis**




Dense fibrosis Apoptotic/necrotic cell death Hepatocellular cancer risk




Necroinflammation Collagen deposition Oxidative Stress

#### Multi-Hit Theory of Fatty Liver Disease in HIV



# Multi-Hit Theory of Fatty Liver Disease in HIV

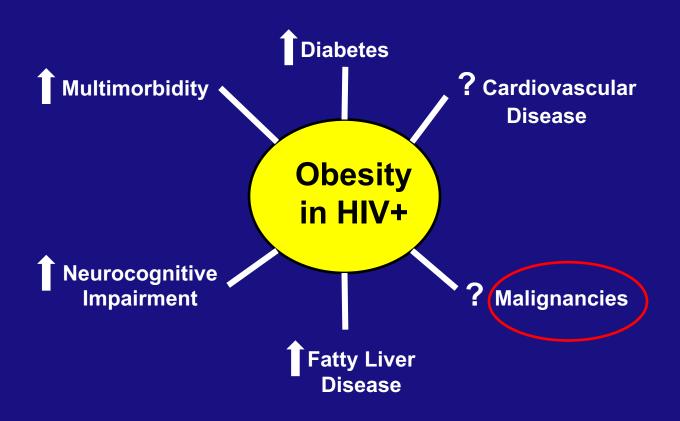


Increased free fatty acids

Impaired fat oxidation

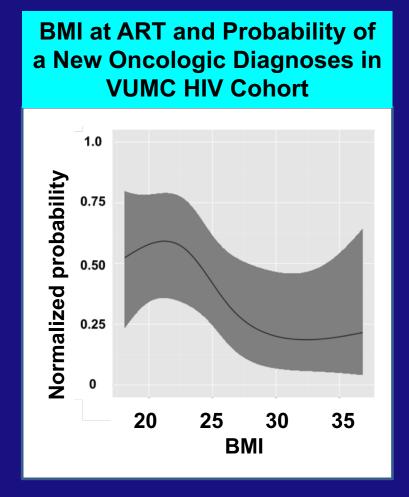
Metabolic Dysfunction

**Excess adiposity** 


Lipodystrophy / Adipocyte injury

Low exercise

**ART** agents


HIV / viral proteins

## Non-communicable Diseases Associated with Obesity in HIV+ Persons

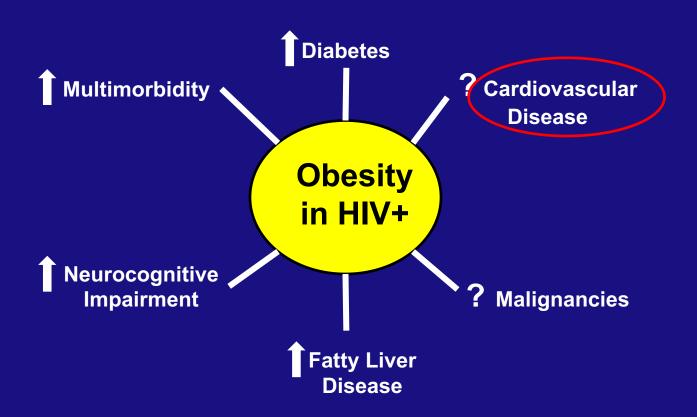


#### Fewer Data on Risk of Malignancies in Obese Persons with HIV

- Obesity expected to increase risk of ovarian, breast, colorectal, and some other cancers as in general population
- At present there are insufficient data on whether this is true
- Differing health habits and behavioral risk factors may also be important



#### Behavioral Risk Reduction: Obesity and Substance Use


#### Substance use in the Women's Interagency HIV Study (WIHS)

|                        | Total | Relationship to log <sub>10</sub> BMI (95% CI) |
|------------------------|-------|------------------------------------------------|
| Current smoker         | 51%   | -1.1 (-2.1, 0)                                 |
| Moderate-heavy alcohol | 22%   | -1.3 (-2.4, -0.2)                              |
| Marijuana use          | 12%   | -0.8 (-2.2, 0.5)                               |
| Other illicit drug use | 23%   | -4.0 (-5.2, -2.8)                              |

#### **Substance use in the Vanderbilt Cohort**

|                        | Normal BMI | Overweight | Obese | p-value |
|------------------------|------------|------------|-------|---------|
| Current smoker         | 51%        | 38%        | 36%   | <0.01   |
| Heavy alcohol use      | 10%        | 11%        | 5%    | 0.28    |
| Marijuana use          | 20%        | 17%        | 10%   | 0.01    |
| Other illicit drug use | 6%         | 6%         | 5%    | 0.78    |

## Non-communicable Diseases Associated with Obesity in HIV+ Persons



#### Obesity Does Not Appear to Contribute Much to the Risk of Cardiovascular Events

 Large epidemiologic studies have not found that a higher BMI increases the risk of incident cardiovascular events in HIVinfected persons.

• Interpreting these findings has been hampered by a paucity of clinical data on how body composition and ART-treated HIV infection interact to affect cardiovascular parameters.

#### The Role of Obesity in Cardiovascular Outcomes is Uncertain...

| Risk Factors for Myocardial Infarction in the D:A:D Cohort |                           |         |  |
|------------------------------------------------------------|---------------------------|---------|--|
|                                                            | Relative Rate<br>(95% CI) | P Value |  |
| Exposure to PIs (per year)                                 | 1.10 (1.04-1.18)          | 0.002   |  |
| Age (per 5 yr)                                             | 1.32 (1.23-1.41)          | <0.001  |  |
| Male sex                                                   | <b>2.13</b> (1.29-3.52)   | 0.003   |  |
| BMI >30 kg/m <sup>2</sup>                                  | 1.34 (0.77-2.34)          | 0.31    |  |
| Family history of CHD                                      | 1.40 (0.96-2.05)          | 0.08    |  |
| Current smoker                                             | <b>2.92</b> (2.04-4.18)   | <0.001  |  |
| Former smoker                                              | 1.63 (1.07-2.48)          | 0.02    |  |
| Previous cardiovascular event                              | 4.64 (3.22-6.69)          | <0.001  |  |
| Diabetes mellitus                                          | 1.86 (1.31-2.65)          | <0.001  |  |
| Hypertension                                               | 1.30 (0.99-1.72)          | 0.06    |  |
| Total cholesterol (per mmol/liter increase)                | 1.26 (1.19-1.35)          | <0.001  |  |
| HDL cholesterol (per mmol/liter increase)                  | 0.72 (0.52-0.99)          | 0.05    |  |

#### The Role of Obesity in Cardiovascular Outcomes is Uncertain...

| Risk Factors for Myocardial Infarction in the D:A:D Cohort |                           |         |  |
|------------------------------------------------------------|---------------------------|---------|--|
|                                                            | Relative Rate<br>(95% CI) | P Value |  |
| Exposure to PIs (per year)                                 | 1.10 (1.04-1.18)          | 0.002   |  |
| Age (per 5 yr)                                             | <b>1.32</b> (1.23-1.41)   | <0.001  |  |
| Male sex                                                   | <b>2.13</b> (1.29-3.52)   | 0.003   |  |
| BMI >30 kg/m²                                              | 1.34 (0.77-2.34)          | 0.31    |  |
| Family history of CHD                                      | 1.40 (0.96-2.05)          | 0.08    |  |
| Current smoker                                             | <b>2.92</b> (2.04-4.18)   | <0.001  |  |
| Former smoker                                              | 1.63 (1.07-2.48)          | 0.02    |  |
| Previous cardiovascular event                              | 4.64 (3.22-6.69)          | <0.001  |  |
| Diabetes mellitus                                          | <b>1.86</b> (1.31-2.65)   | <0.001  |  |
| Hypertension                                               | <b>1.30</b> (0.99-1.72)   | 0.06    |  |
| Total cholesterol (per mmol/liter increase)                | <b>1.26</b> (1.19-1.35)   | <0.001  |  |
| HDL cholesterol (per mmol/liter increase)                  | 0.72 (0.52-0.99)          | 0.05    |  |

#### Obesity Appears to have Minimal Effects on several CVD Risk Factors in Persons with HIV

| Comparison of CV parameters between non-obese and obese HIV+ persons |                    |                    |         |
|----------------------------------------------------------------------|--------------------|--------------------|---------|
| Outcome variable                                                     | Non-obese (n=35)   | Obese (n=35)       | p-value |
| HOMA2 insulin sensitivity, %                                         | 130 (74, 191)      | 58 (41, 89)        | <0.001  |
| HDL, mg/dl                                                           | 46 (35, 64)        | 44 (39, 49)        | 0.28    |
| LDL, mg/dl                                                           | 101 (85, 122)      | 111 (88, 129)      | 0.50    |
| Triglycerides, mg/dl                                                 | 94 (66, 131)       | 104 (85, 152)      | 0.12    |
|                                                                      |                    |                    |         |
| Carotid bulb intima-media                                            | 0.06 (0.05, 0.07)  | 0.06 (0.06, 0.08)  | 0.25    |
| thickness, cm                                                        |                    |                    |         |
| Common carotid IMT, cm                                               | 0.057 (0.05, 0.06) | 0.062 (0.05, 0.07) | 0.11    |
| Internal carotid IMT, cm                                             | 0.056 (0.05, 0.07) | 0.053 (0.04, 0.07) | 0.97    |
| Brachial artery dilation (FMD), %                                    | 9.0 (5.9, 11.6)    | 8.4 (4.8, 10.6)    | 0.31    |

#### Getting to Goal with Primary Prevention

| Proportion of HIV patients with CV risk factors <u>not</u> at g<br>Study | joal in HIV-HEART |
|--------------------------------------------------------------------------|-------------------|
| Hypertriglyceridemia                                                     | 39%               |
| Low HDL                                                                  | 28%               |
| Hypertension                                                             | 21%               |
| High LDL (patients with Moderate Framingham CHD Risk)                    | 50%               |
| High LDL (patients with High Framingham CHD Risk)                        | 30%               |
| No antiplatelet Therapy (CHD / CHD equivalent only)                      | 59%               |
| Uncontrolled Diabetes Mellitus                                           | 44%               |

#### Reducing Comorbid Disease Risk in Obese, HIV-infected Adults

- Weight loss: Goal BMI <25 kg/m² and waist circumference <94cm (males) or <80cm (females)</li>
- Prevention of weight gain after ART initiation: <5kg or <5cm in waist circ.</li>
- Nutrition counselling:
  - Aim for <25% calories from fat</li>
  - Reduce/eliminate energy-dense snacks
  - Reduce/eliminate soft drinks and high-sugar juices
  - Increase soluble fiber intake
- Physical activity:
  - 30 minutes of walking daily
  - 10,000 steps (digital pedometer Fit Bit)

#### Reducing Comorbid Disease Risk in Obese, HIV-infected Adults

- Who is most at risk of diabetes:
  - Overweight: 2x increased risk of developing diabetes on ART
  - Obese: 3-4x higher risk
  - <u>Waist hip ratio</u>: more predictive of diabetes than BMI (estimates central obesity)
  - <u>Metabolic syndrome</u> (central obesity, HTN, dyslipidemia, elevated fasting glucose): 5-9x risk of developing diabetes
  - Possibly exposure to AZT, d4T, older generation Pls; case reports with Dolutegravir
  - <u>Diabetes dyslipidemia</u>: High triglycerides with low HDL, 80% increased risk in the D:A:D cohort

#### Reducing Comorbid Disease Risk in Obese, HIV-infected Adults

- Who is most at risk of fatty liver:
  - Triad of obesity, glucose intolerance, and high triglycerides
  - Concomitant moderate-heavy alcohol use or Hep C
- Screening (DM and FLD)
  - Perform yearly HbA1c or fasting glucose, fasting triglycerides and HDL at minimum in non-diabetics
  - Perform yearly AST/ALT, consider US or fibroscan if persistently elevated

#### Summary Points

- Proportion of overweight and obese HIVinfected individuals is reaching parity with the general population
- Comorbid obesity and HIV is a strong risk factor for diabetes, neurocognitive decline, and fatty liver disease
- Central obesity appears to be far worse than peripheral fat

#### **Summary Points**

- There may be an 'obesity paradox' for malignancies in persons with HIV, but likely due in part to differences in smoking, alcohol, and drug use
- While obesity does not appear to increase CVD event risk in persons with HIV, CV risk factors are often not at goal in HIV patients
- Emphasis on nutrition and exercise counselling, routine diabetes and CVD screening and treatment, and prevention of weight gain can improve health outcomes for obese persons with HIV



A Webcast Wednesday Series from the Southeast AETC:

# AGING IN AUGUST

#### Thank you!



