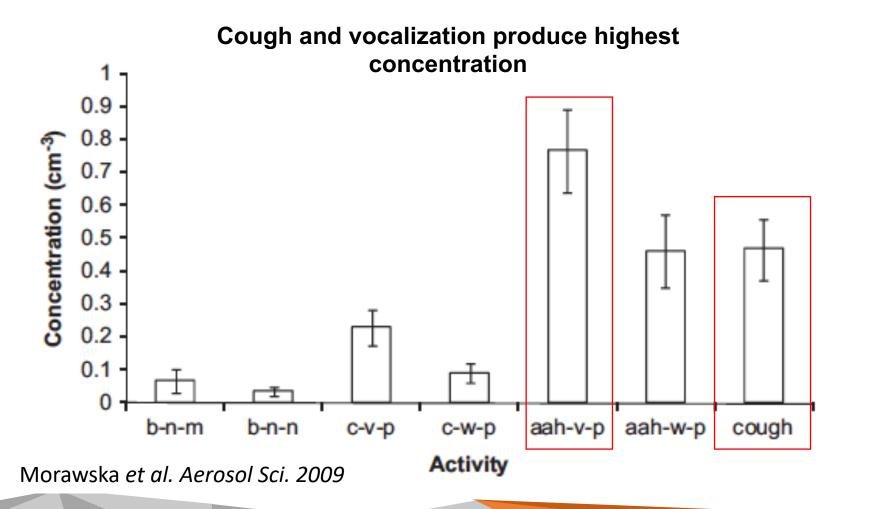
Evidence for using face masks to prevent SARS-CoV-2 transmission in the community

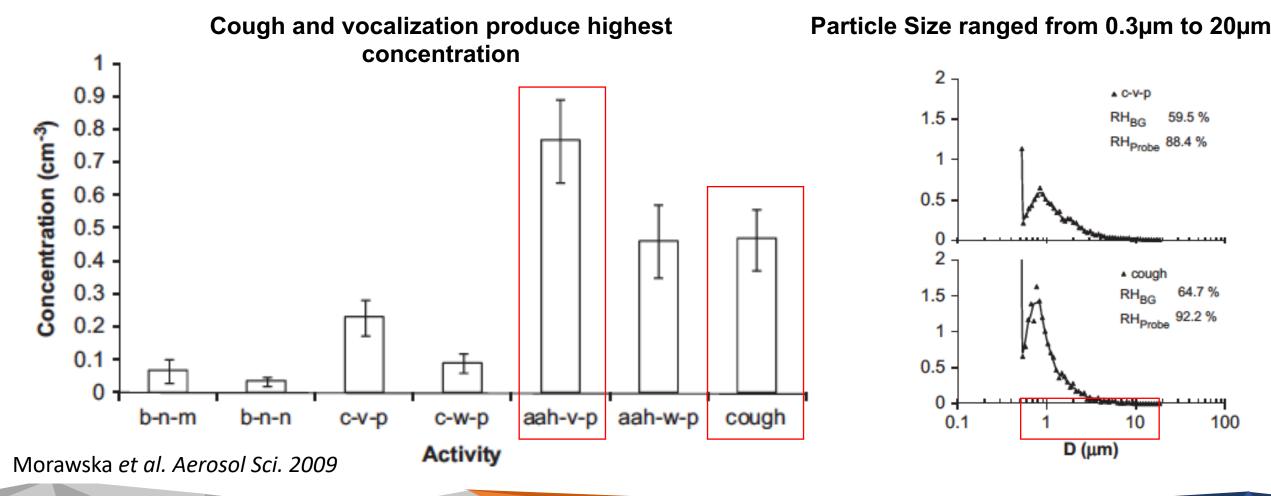
6/9/2020

DISCLOSURES

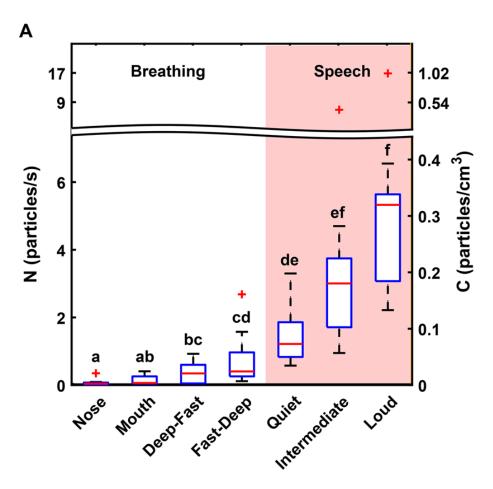
- I have no conflicts of interest
- I will only review data that has been peer reviewed


OBJECTIVES

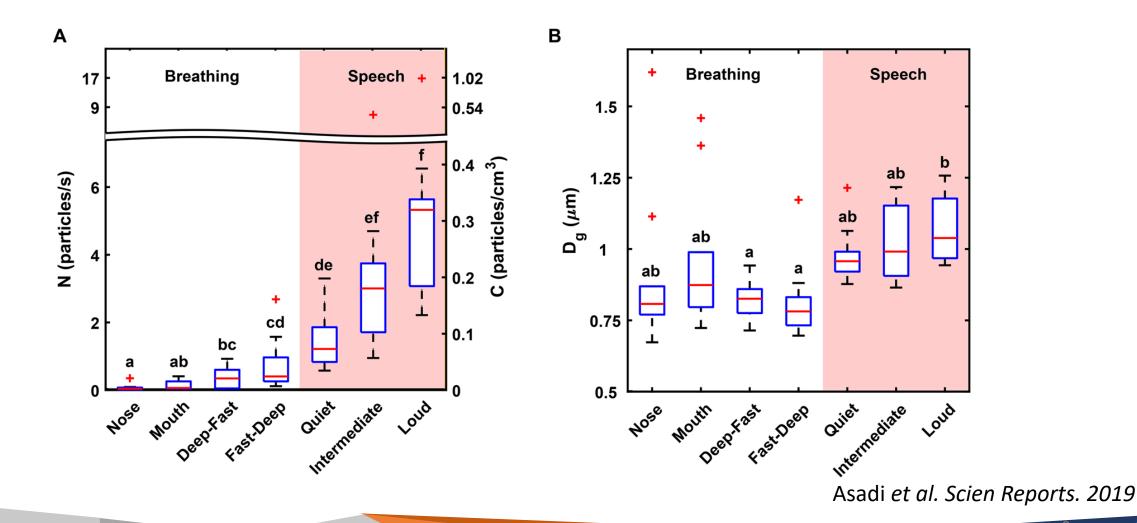
- Review what is known about the production of respiratory particles
- Review existing evidence for the efficacy of face masks in filtering particles
- Discuss the use of masks in both the hospital setting and community setting
- > Go over guidelines from major public health organizations



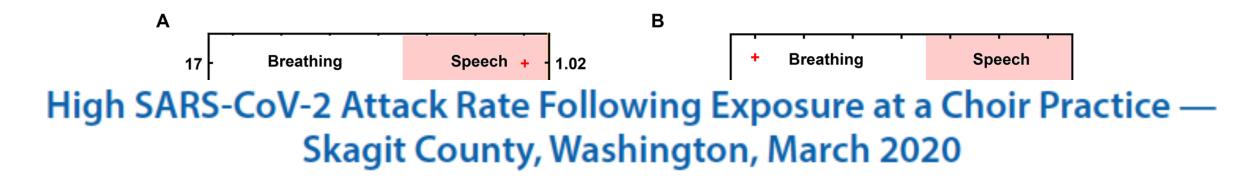
Respiratory Particle Production


Respiratory droplet production increases with cough and vocalization

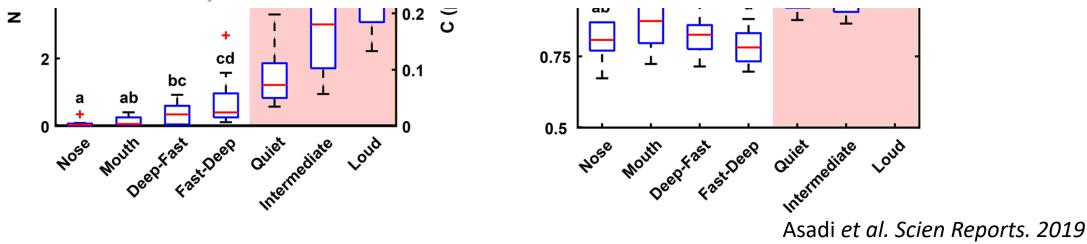
Respiratory droplet production increases with cough and vocalization

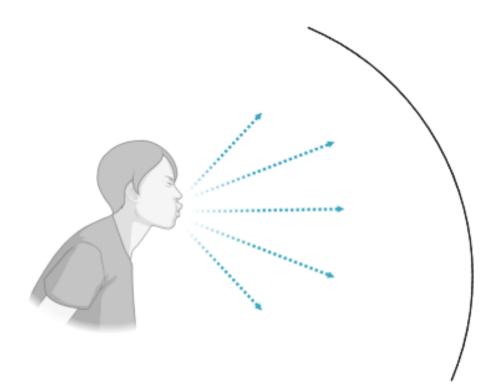


Particle emission increases with amplitude



Asadi et al. Scien Reports. 2019


Particle emission increases with amplitude


Particle emission increases with amplitude

Lea Hamner, MPH¹; Polly Dubbel, MPH¹; Ian Capron¹; Andy Ross, MPH¹; Amber Jordan, MPH¹; Jaxon Lee, MPH¹; Joanne Lynn¹; Amelia Ball¹; Simranjit Narwal, MSc¹; Sam Russell¹; Dale Patrick¹; Howard Leibrand, MD¹

Transmission of SARS-CoV-2

Believed to be primarily through droplets

- May be on fomites
- Up to 86% of cases were undocumented initially¹

Distance (meters)

¹Li R, *et al. Science. 2020* Image made in Biorender

Summary: Respiratory Particles

- All expiratory activity produces respiratory particles, but vocalizations and cough produce more
- > The size of respiratory particles is small (~ 1µm) but wide range
- The implications are that transmission can occur without coughing or sneezing
- Droplets are thought to be the primary mode of transmission of SARS-CoV-2

Mask Filtration of Particles

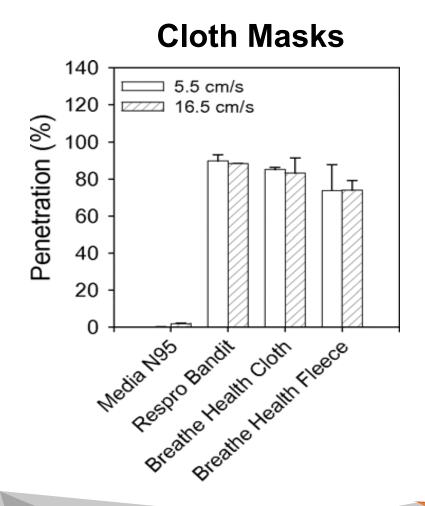
Respirators and surgical masks are defined by particle size filtration

Respirators: filter 0.075µm solid particles and measured across entire mask

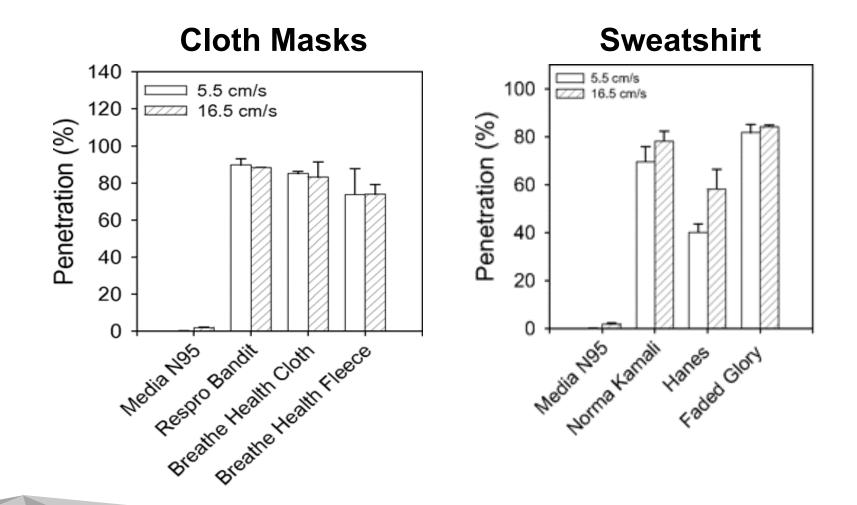
Respirators and surgical masks are defined by particle size filtration

Respirators: filter 0.075µm solid particles and measured across entire mask

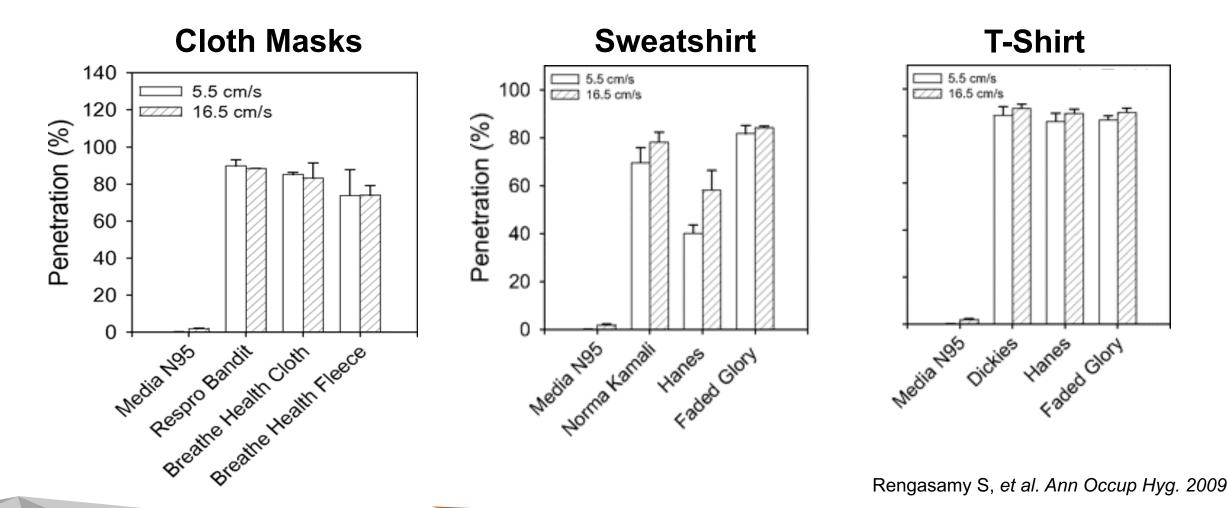
Medical: filter 3µm droplets and measured in cross section

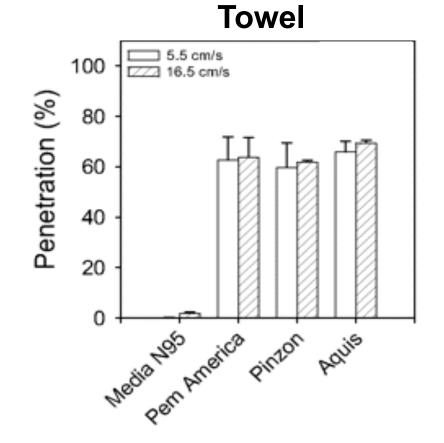

Mask type determines efficacy of particle filtration

Mask Type	Penetration (%)
Respirator (e.g. N95)	0.87%
Medical Mask (Cotton)	44.695%
General Mask (Cotton)	62.4%
Handkerchief (gauze, cotton)	97.56%

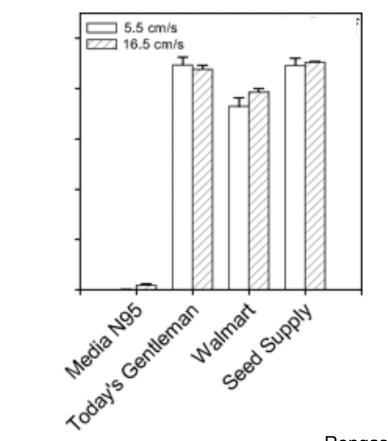

- Respiratory masks had superior protection
- Inward and outward protection was similar

> The number of layers of cotton significantly changed penetration


Jung et al. Aeorosol and Air Quality Research. 2014

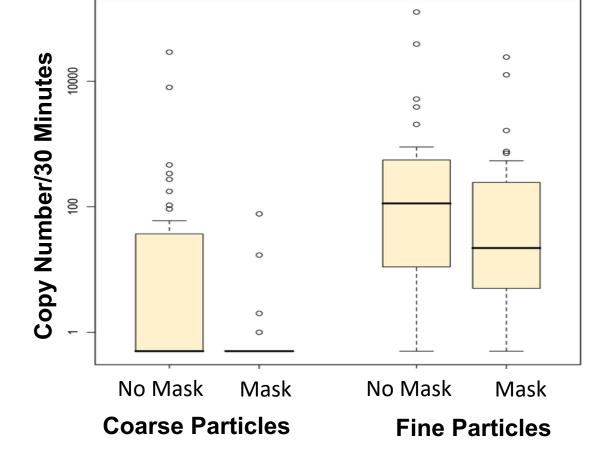


Rengasamy S, et al. Ann Occup Hyg. 2009



Rengasamy S, et al. Ann Occup Hyg. 2009

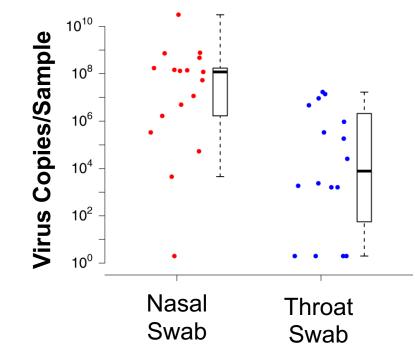
Scarf


Rengasamy S, et al. Ann Occup Hyg. 2009

Summary: Efficacy of particle filtration

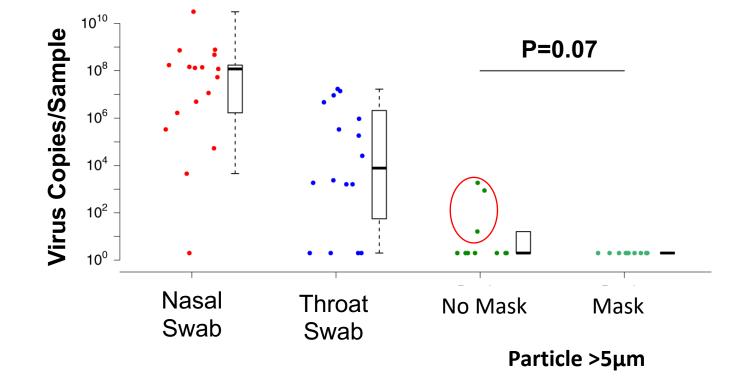
- Respirator (N95) masks offer the highest protection against particles around the size produced by respiratory exhalation
- > Two important factors that influence filtration efficacy:
 - Type of material
 - Number of layers

Efficacy of masks in stopping virus particles

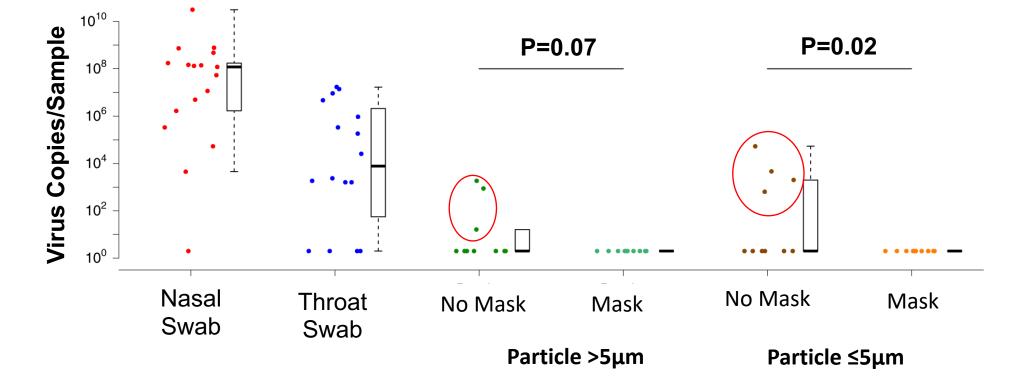

Surgical masks reduce the amount of Influenza RNA detected

Mask use may prevent spread of Influenza

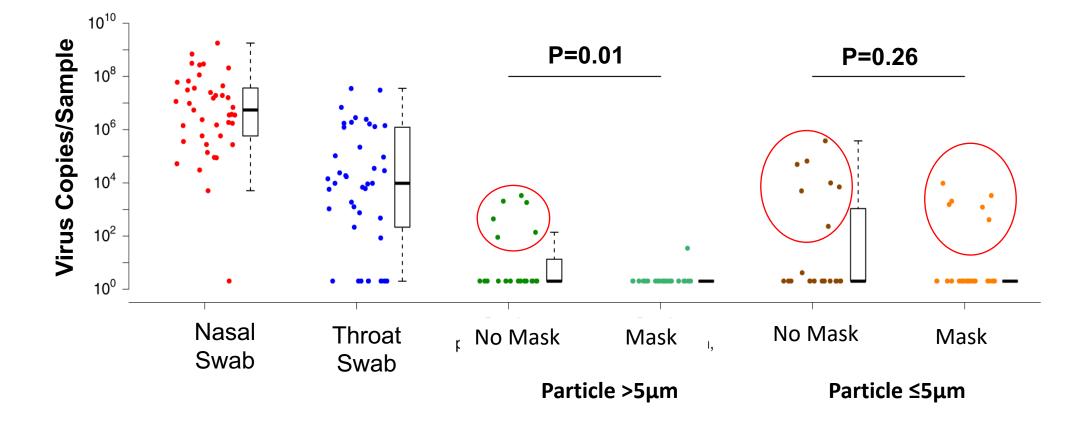
Milton et al. PLoS Pathog. 2013


Surgical mask significantly reduced shedding of virus in coronavirus

Viral shedding higher in nasal compared to throat swabs.


Leung et al. Nat Med. 2020

Surgical mask significantly reduced shedding of virus in coronavirus


Masks reduce the number of samples with detectable virus in droplets
Leung et al. Nat Med. 2020

Surgical mask significantly reduced shedding of virus in coronavirus

Masks reduce the number of samples with detectable virus in droplets
Leung et al. Nat Med. 2020

Surgical masks were maybe less effective in preventing spread of Influenza in aerosols

Leung et al. Nat Med. 2020

Key points: Mask efficacy and filtering viral RNA/DNA

- Surgical masks reduce viral RNA/DNA in larger droplets
- Masks may prevent coronavirus transmission in smaller particles as well

Evidence for mask use to prevent infections

Early use of surgical masks may reduce transmission of influenza

Study Group	Participants	RT-PCR Confirmed	Clinical	
Control	279	1.00 (reference)	1.00 (reference)	
Hand hygiene	257	0.57 (0.26-1.22)	0.92 (0.57-1.48)	
Facemask + hand hygiene	258	0.77 (0.38-1.55)	1.25 (0.79-1.98)	

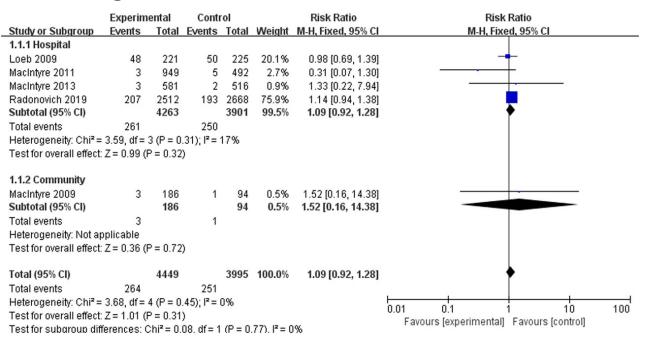
Face masks and hand hygiene interventions did not reduce rate of secondary attacks

If intervention started < 36 hours, odd ratio of secondary attack with face mask and hand hygiene was 0.33

Cowling BJ, et al. Ann Intern Med. 2009

Face mask and hand hygiene reduced the incidence of influenza like illness

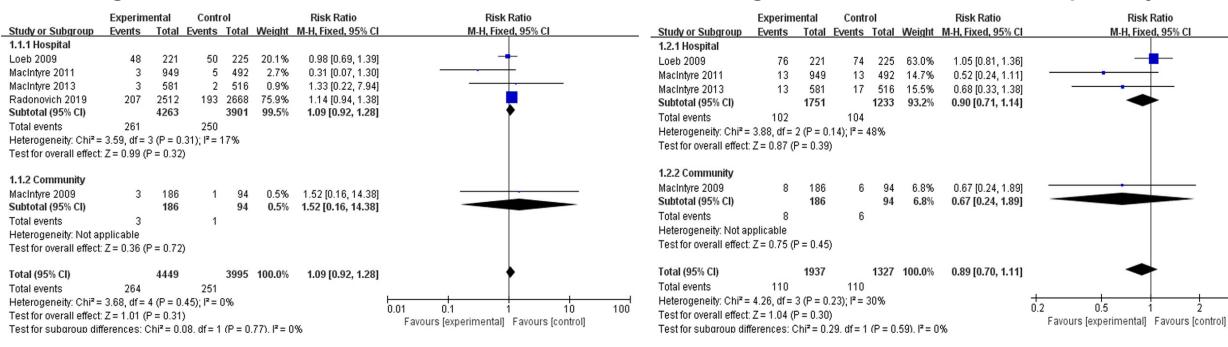
> 1,111 college students


- 1:1:1 Control, face mask, face mask + hand hygiene
- Wore face mask an average of 5 hours/day
- Did not reduce PCR proven influenza

	Face Mask/Hand hygiene vs. Control				
1	0.16	0.85	(0.44-1.64)	0.62	
2	0.15	0.66	(0.40-1.10)	0.11	
3	0.23	0.52	(0.30-0.88)	0.02 ^e	
4	0.49	0.40	(0.20-0.83)	0.01 ^e	
5	0.82	0.32	(0.12-0.84)	0.02 ^e	
6	0.96	0.25	(0.07-0.87)	0.03 ^e	
Cumulative Rate Ratio ^d	0.42	0.78	(0.57-1.08)	0.13	

Aiello AE, et al. PLoS ONE. 2012

There is no evidence to suggest N95 masks are better than surgical masks in preventing respiratory viral infections

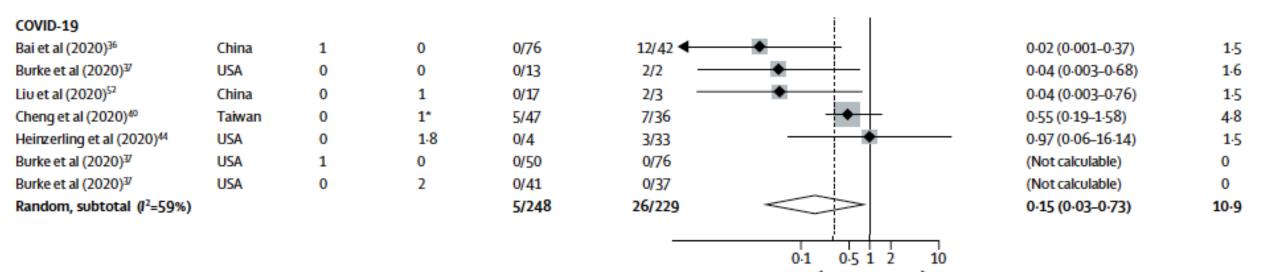

... No significant difference with influenza

Long Y, et al. J Evidence-based Med. 2020

There is no evidence to suggest N95 masks are better than surgical masks in preventing respiratory viral infections

... No significant difference with influenza

Long Y, et al. J Evidence-based Med. 2020

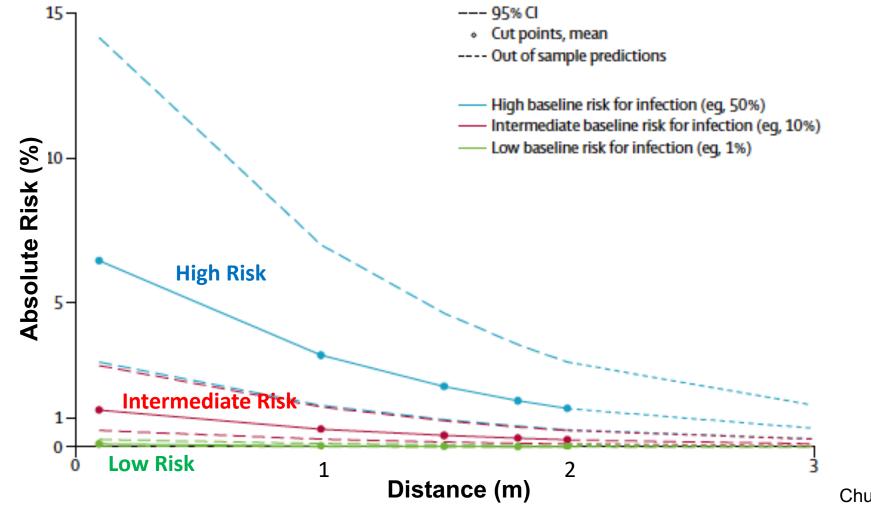

... No significant difference with respiratory viruses

What about SARS-CoV-2?

Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis

Derek K Chu, Elie A Akl, Stephanie Duda, Karla Solo, Sally Yaacoub, Holger J Schünemann, on behalf of the COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors*

Physical distance \geq 1 meter associated with decreased risk of transmission



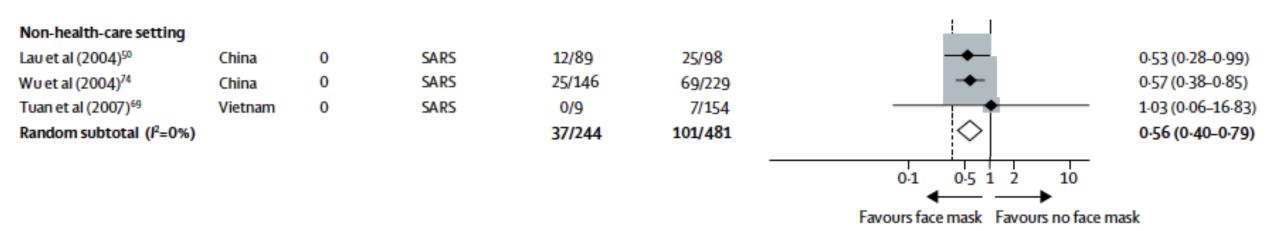
Favours further distance Favours shorter distance

Physical distance of ≥ 1m vs < 1m had a relative risk of 0.15 (0.03-0.73)</p>

Chu DK, et al. Lancet. 2020

Physical distance \geq I meter associated with decreased risk of transmission

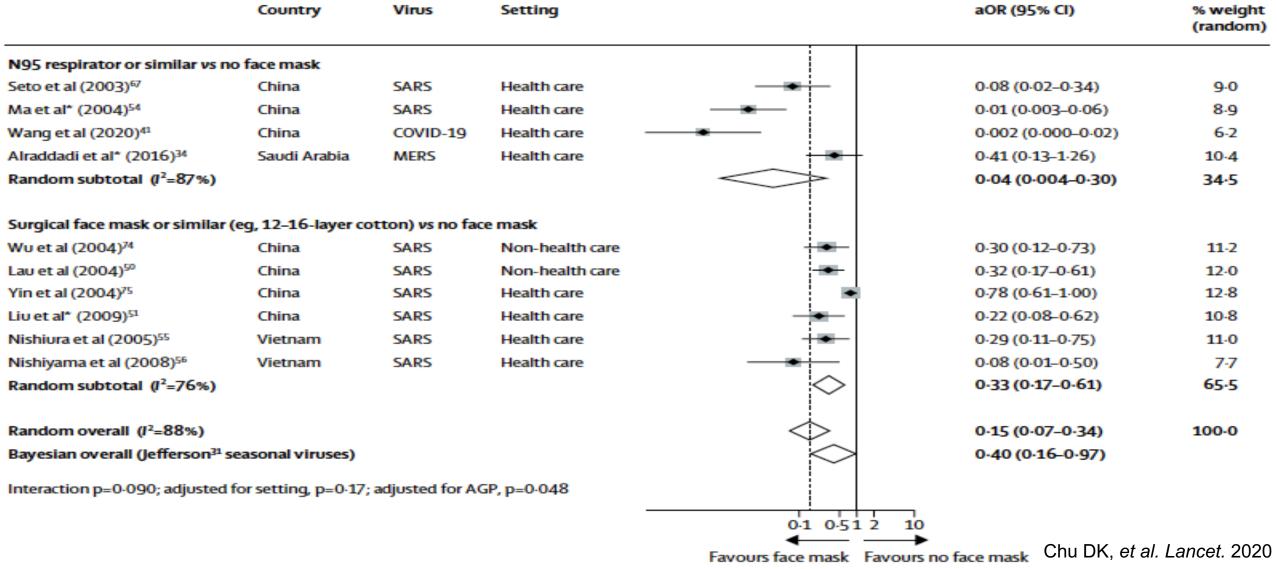
Chu DK, et al. Lancet. 2020


Face masks prevented transmission of novel Coronavirus in healthcare settings

	Country	Respirator (0=no)	Infection	Events, face mask (n/N)	Events, no face mask (n/N)		RR (95% CI)
Health-care setting							
Scales et al (2003)66	Canada	0	SARS	3/16	4/15	• •	0.70 (0.19-2.63)
Liu et al (2009) ⁵¹	China	0	SARS	8/123	43/354		0.54 (0.26-1.11)
Pei et al (2006)61	China	0	SARS	11/98	61/115		0.21 (0.12-0.38)
Yin et al (2004) ⁷⁵	China	0	SARS	46/202	31/55		0.40 (0.29-0.57)
Park et al (2016) ⁵⁹	South Korea	0	MERS	3/24	2/4	•	0.25 (0.06-1.06)
Kim et al (2016)48	South Korea	0	MERS	0/7	1/2		0.13 (0.01-2.30)
Heinzerling et al (2020) ⁴⁴	USA	0	COVID-19	0/31	3/6	< ●	0.03 (0.002-0.54)
Nishiura et al (2005)55	Vietnam	0	SARS	8/43	17/72		0.79 (0.37-1.67)
Nishiyama et al (2008) ⁵⁶	Vietnam	0	SARS	17/61	14/18		0.36 (0.22-0.58)
Reynolds et al (2006) ⁶⁴	Vietnam	0	SARS	8/42	14/25	- • -	0.34 (0.17-0.69)
Loeb et al (2004) ⁵³	Canada	1	SARS	3/23	5/9	•	0.23 (0.07-0.78)
Wang et al (2020)41	China	1	COVID-19	0/278	10/215		0.04 (0.002-0.63)
Seto et al (2003) ⁶⁷	China	1	SARS	0/51	13/203		0.15 (0.01-2.40)
Wang et al (2020) ⁷⁰	China	1	COVID-19	1/1286	119/4036	•	0.03 (0.004-0.19)
Alraddadi et al (2016) ³⁴	Saudi Arabia	1	MERS	6/116	12/101		0.44 (0.17-1.12)
Ho et al (2004)45	Singapore	1	SARS	2/62	2/10	• ;	0.16 (0.03-1.02)
Teleman et al (2004) ⁶⁸	Singapore	1	SARS	3/26	33/60		0.21 (0.07-0.62)
Wilder-Smith et al (2005) ⁷²	Singapore	1	SARS	6/27	39/71		0.40 (0.19-0.84)
Ki et al (2019) ⁴⁷	South Korea	1	MERS	0/218	6/230		0.08 (0.005-1.43)
Kim et al (2016) ⁴⁹	South Korea	1	MERS	1/444	16/308	•	0.04 (0.01-0.33)
Hall et al (2014) ⁴³	Saudi Arabia	1	MERS	0/42	0/6		(Not calculable)
Ryu et al (2019) ⁶⁵	South Korea	1	MERS	0/24	0/10		(Not calculable)
Park et al (2004)58	USA	1	SARS	0/60	0/45		(Not calculable)
Peck et al (2004)60	USA	1	SARS	0/13	0/19		(Not calculable)
Burke et al (2020) ³⁷	USA	1	COVID-19	0/64	0/13		(Not calculable)
Ha et al (2004)42	Vietnam	1	SARS	0/61	0/1		(Not calculable)
Random subtotal (I ² =50%)				126/3442	445/6003		0.30 (0.22-0.41)
						i ₁	

Chu DK, et al. Lancet. 2020

Favours face mask Favours no face mask


Face masks prevented transmission of novel Coronavirus in non-healthcare settings

The risk reduction was lower in non-healthcare settings compared to healthcare settings

However, after adjustment for higher frequency of respirator use in healthcare settings, the risk reduction was similar

Respirators may be more effective than medical masks BUT more studies are needed

Limitations to current studies

- Well-designed, high-quality randomized controlled trials evaluating the intervention of face masking in the community are lacking
- Most studies evaluated masking as a bundle
- Clinical vs laboratory confirmed infections may yield bias results
- Superiority of respirators contrasts to multiple previous findings of non-superiority and may be in part due to bias

Key points: Efficacy of face masks in preventing SARS-CoV-2

- There is a strong relationship between distance to infection source and risk of infection
- Face masks (both respirators and medical masks) are associated with significant reductions in risk of infection in both healthcare and non-healthcare settings
- Face masks do not replace social distancing

Government Agency Guidelines

Centers for Disease Control and Prevention

Recommendations

General public over the age of 2 should wear cloth face coverings in public setting where other social distancing measures are difficult to maintain

Use cotton fabric (quilting, sheets, or T-shirt)

Healthcare Workers

Continuously wear medical masks in clinical areas when community spread is occurring

Respirator when performing aerosol generating procedures

Community

Recommend taking into consideration the purpose of the mask, risk of COVID-19 exposure, vulnerability of population, setting, feasibility, and type of mask

Situations/settings	Population	Purpose of mask use	Type of mask to consider wearing if recommended locally
Areas with known or suspected widespread transmission and limited or no capacity to implement other containment measures such as physical distancing, contact tracing, appropriate testing, isolation and care for suspected and confirmed cases.	General population in public settings, such as grocery stores, at work, social gatherings, mass gatherings, closed settings, including schools, churches, mosques, etc.	Potential benefit for source control	Non-medical mask
Settings with high population density where physical distancing cannot be achieved; surveillance and testing capacity, and isolation and quarantine facilities are limited	People living in cramped conditions, and specific settings such as refugee camps, camp-like settings, slums	Potential benefit for source control	Non-medical mask
Settings where a physical distancing cannot be achieved (close contact)	General public on transportation (e.g., on a bus, plane, trains) Specific working conditions which places the employee in close contact or potential close contact with others e.g., social workers, cashiers, servers	Potential benefit for source control	Non-medical mask

Situations/settings	Population	Purpose of mask use	Type of mask to consider wearing if recommended locally
Settings where physical distancing cannot be achieved and increased risk of infection and/or negative outcomes	 Vulnerable populations: People aged ≥60 years People with underlying comorbidities, such as cardiovascular disease or diabetes mellitus, chronic lung disease, cancer, cerebrovascular disease, immunosuppression 	Protection	Medical mask
Any setting in the community*	Persons with any symptoms suggestive of COVID-19	Source control	Medical mask

Non-medical Masks Considerations

- > Material type: Polypropylene, cotton, nylon
- > Number of layers: minimum of 3 layers
- Combination of materials: innermost (cotton) and outermost (polypropylene)
- Mask shape: flat-fold or duckbill
- **Mask Maintenance:** Worn by one person and not shared

Summary of Key Points

- Respiratory droplets are produced by all activities, but highest with vocalization, coughing, or sneezing
- Respirators have superior filtration of particles compared with surgical masks. Homemade materials (cotton e.g.) have lower filtration (0.7% to 60%)
- Face masks may stop transmission of coronavirus RNA in droplets and aerosols
- The use of face masks significantly reduced the risk of novel coronavirus infections in both health care and non-health care settings
- High-quality studies are needed

References

- Morawska L et al. Aeorosol Sicence. 2009;40:256-269
- Asadi S, et al. Aerosol Emission and superemission during human speech increase with voice loudness. Sci Rep. 2019;9:2348.
- Rengasamy S, et al. Simple respiratory protection evaluation of the filtration performance of cloth masks and common fabric materials against 20-1000 nm size particles. Ann Occup Hygiene. 2010;54:789-798.
- Li R, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020;386:489-493.
- Jung, H., Kim, J.K., Lee, S., Lee, J., Kim, J., Tsai, P., et al., 2014. Comparison of Filtration Efficiency and Pressure Drop in Anti-Yellow Sand Masks, Quarantine Masks, Medical Masks, General Masks, and Handkerchiefs. Aerosol Air Qual. Res. 14, 991–1002.
- Rengasamy S, Eimer B, Shaffer RE. Simple respiratory protection--evaluation of the filtration performance of cloth masks and common fabric materials against 20-1000 nm size particles. Ann Occup Hyg. 2010;54(7):789-98.
- van der Sande M, et al. Profession and home-made face masks reduce exposure to respiratory infections among the general population. PLoS One. 2008;3:e2618.
- Milton DK, et al. Influenza virus aerosols in human exhaled breath particle size, culturability, and effect of surgical masks. PLoS Pathog.

References

- Cowling BJ, Chan KH, Fang VJ, Cheng CK, Fung RO, Wai W, et al. Facemasks and hand hygiene to prevent influenza transmission in households: a cluster randomized trial. Ann Intern Med. 2009;151(7):437-46.
- Aiello AE, Perez V, Coulborn RM, Davis BM, Uddin M, Monto AS. Facemasks, hand hygiene, and influenza among young adults: a randomized intervention trial. PLoS One. 2012;7(1):e29744
- Jefferson T, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Cochrane Database Syst Rev. 2011;7:CD006206.
- Long Y, et al. Effectiveness of N95 respirators versus surgical masks against influenza: A systematic review and metaanalysis. J Evid Based Med. 2020 [Epub ahead of print]
- Leung NHL, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med. 2020;26:676-680.
- Chu, D.K., Akl, E.A., Duda, S., Solo, K., Yaacoub, S., Schünemann, et al., 2020. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and metaanalysis. Lancet S0140673620311429
- Centers for Diseases and Prevention. <u>https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/diy-cloth-face-coverings.html</u>
- World Health Organization. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-forpublic/when-and-how-to-use-masks

Eye protection prevented transmission of novel Coronavirus

	Country	Respirator (0=no)	Events, eye protection (n/N)	Events, no eye protection (n/N)	n	RR (95% CI)	% weight (random)
MERS							
Alraddadi et al (2016) ³⁴	Saudi Arabia	1	1/47	17/165		0.21 (0.03-1.51)	4.0
Ki et al (2019) ^ø	South Korea	1	0/9	6/64		0.50 (0.03-8.21)	2.2
Kim et al (2016) ⁴⁹	South Korea	1	0/443	2/294	< <u>∗</u> +	0.13 (0.01-2.76)	1.8
Ryu et al (2019) ⁶⁵	South Korea	1	0/24	0/10		(Not calculable)	0
Random subtotal (I ² =0%	6)		1/523	25/533		0-24 (0-06-0-99)	8-0
SARS							
Chen et al (2009) ³⁹	China	0	1/45	90/703		0.17 (0.02-1.22)	4.2
Liu et al (2009) ⁵¹	China	0	17/221	34/256		0.58 (0.33-1.01)	21-2
Pei et al (2006)61	China	0	24/120	123/323	-	0.53 (0.36-0.77)	26-0
Yin et al (2004) ⁷⁵	China	0	10/120	67/137	• 1	0.17 (0.09-0.32)	19-4
Caputo et al (2006) ³⁸	Canada	1	2/46	4/32		0-35 (0-07-1-79)	5.6
Ma et al (2004) ⁵⁴	China	1	7/175	40/269		0.27 (0.12-0.59)	15-6
Park et al (2004)58	USA	1	0/30	0/72		(Not calculable)	0
Peck et al (2004)60	USA	1	0/13	0/19		(Not calculable)	0
Random subtotal (I ² =62	!%)		61/770	358/1811	\diamond	0-34 (0-21-0-56)	92-0
COVID-19							
Burke et al (2020) ³⁷	USA	1	0/42	0/34		(Not calculable)	0
Random subtotal			0/42	0/34		(Not calculable)	0
Random overall (I ² =43%)		62/1335	383/2378	\diamond	0-34 (0-22-0-52)	100-0
Adjusted estimates, ove	rall (2 studies, Y	in ⁷⁵ and Ma ⁵⁴)			\diamond	aOR 0-22 (0-12-0-39)	
Interaction by virus, p=0-7		-			-	aRR 0-25 (0-14-0-43)	
					0.1 0.5 1 2 1	1 10	
					_ →		

Favours eye protection Favours no eye protection

Chu DK, et al. Lancet. 2020

50