



# Immune Responses to Viruses and HIV Vaccine Trial Update

Spyros Kalams, M.D.
Infectious Diseases Unit
Vanderbilt University Medical Center
Principal Investigator
HIV Vaccine Clinical Research Site



#### Objectives:

- Overview of the immune response
- Understanding how the immune system fights viral infections
- Recent results, and Upcoming HIV vaccine trials

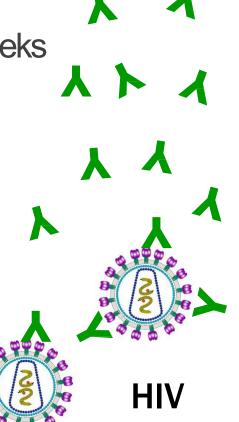
#### Innate Response

- First line of defense
- Prevents infection? No!
- NK cells activated when cells are infected
- Activation of innate response is required before the adaptive response can happen
- No immunological memory
- We don't think vaccination will help with immunological memory
- NK cells work by causing infected cells to burst, like a dart bursting a water balloon



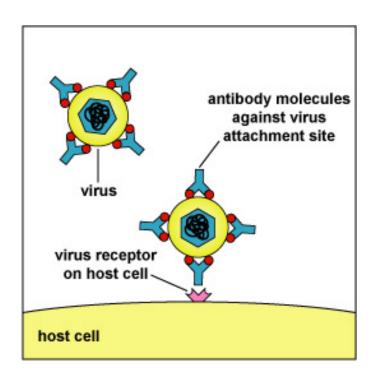
#### Adaptive = Acquired

- Antigen-specific defense mechanism
- Takes several days to become protective
- Develops throughout life




# ANTIBODIES

#### Adaptive – Part 1


#### **Humoral = Antibodies**

- Antibodies are made by B cells in the first 2 days after infection, but usually takes 2 weeks for full effect
- Antibodies neutralize or stop the virus
- Antibodies help eliminate the virus
- Antibodies can prevent infection
- Antibodies have immunological memory



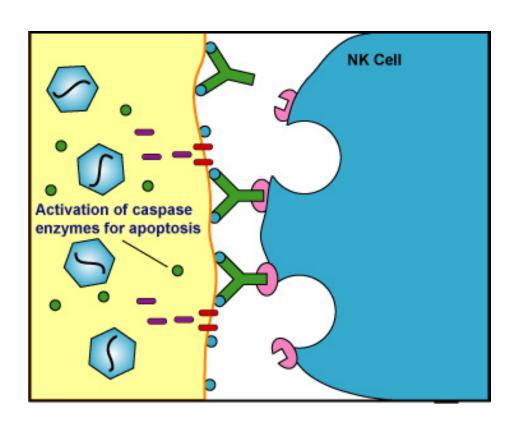


## How Do Antibodies Prevent Infection? 1st way: Neutralization



**Neutralization:** 

Antibody prevents the virus from attaching to the host cell


Tested in Antibody-mediated prevention trials (AMP)

### 2<sup>nd</sup> Example: Binding Antibodies Antibody Dependent Cellular Cytotoxicity (ADCC)

- Natural Killer (NK) cells may also be able to act like a CD8 killer Tcell ("a hitman")
- They need a binding antibody attached to the virus to act like a "lookout"
- With the lookout in place, the NK cell can identify the virus infected cell and kill it



# How Do Antibodies Help Clear Infection? Antibody Dependent Cellular Cytotoxicity (ADCC)



#### **ADCC:**

uses other cells of the immune system to destroy virus infected cells



#### Humoral Response – Summary

- Antibodies attach to the virus at sites that are used by the virus for entry into cells.
- Neutralizing antibodies can work alone to block a virus from entering cells.
- Vaccines designed to elicit neutralizing antibodies against HIV have not worked very well in trials so far, but work against other viruses such as influenza, and probably SARS CoV-2.
- Recent discoveries of several broadly neutralizing antibodies are very exciting, and designing a vaccine to produce these antibodies is underway!
- Binding antibodies can attach to HIV and call other parts of the immune system into action to help destroy it.



#### Adaptive Part Two - Cellular

- Cellular response involves two types of cells:
  - 1) Helper Tlymphocytes (CD4+)
  - 2) Cytotoxic Tlymphocytes (CTL or CD8+)
- Have memory!
- Activated once infection occurs



#### The Two Types of Cells

 CD4+ cells recognize virus and help cells communicate with each other, calling the killers into action





CD8+ cells are the killers

#### How Does the Adaptive Response Work?





- Checks other cells of the body (are they infected or abnormal?)
- Destroys infected or abnormal cells

#### Adaptive Response – Summary

Cellular = Cytotoxic Tlymphocytes (CTLor CD8+) and helper Tlymphocytes (CD4+)

- Cannot prevent infection
- Tcells are activated when cells become infected
- Tcells can eradicate an established infection
- Tcells have immunological memory
- Tcells can be primed by vaccination





#### Introduction to Vaccinology







#### **Preventive Vaccines**

- Used for decades around the world, most commonly in children
- Very safe when manufactured and used properly
- Very cost-effective compared to treatment
- Eliminated smallpox worldwide, soon polio
- 2008: 1<sup>st</sup> vaccine for girls and young women against a cancer-causing virus, human papilloma virus (HPV), and 2009-10 approval for boys and young men



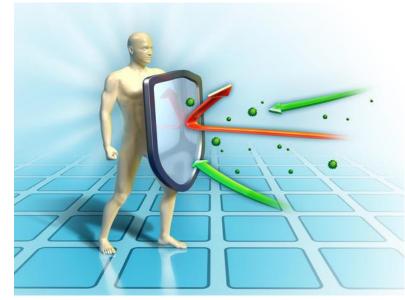
#### Vaccine Research in Perspective

| VACCINE         | DISCOVERY<br>OF VIRUS | VACCINE DEVELOPED<br>FOR HUMAN USE | YEARS TO<br>VACCINE |
|-----------------|-----------------------|------------------------------------|---------------------|
| H. Influenzae-B | 1892                  | 1985                               | 93                  |
| Herpes (HSV-1)  | 1919                  | Not available                      | >90                 |
| Pertussis       | 1906                  | 1926                               | 20                  |
| Polio           | 1909                  | 1954                               | 47                  |
| Yellow Fever    | 1900                  | 1935                               | 35                  |
| Influenza       | 1933                  | 1945                               | 12                  |
| Measles         | 1911                  | 1957                               | 46                  |
| Hepatitis A     | 1973                  | 1995                               | 22                  |
| Hepatitis B     | 1967                  | 1984                               | 17                  |
| HPV             | 1974                  | 2007                               | 33                  |
| HIV             | 1983                  | Not available                      | >30                 |
| SARS CoV-1      | 2003                  | N/A                                |                     |
| SARS CoV-2      | 2019                  | 2020                               | <1 (!)              |



#### The Impact of Vaccines in the United States

| DISEASE                                          | BASELINE 20 <sup>TH</sup> CENTURY<br>PRE-VACCINE ANNUAL CASES | 2008 CASES* | PERCENT<br>DECREA<br>SE |
|--------------------------------------------------|---------------------------------------------------------------|-------------|-------------------------|
| Measles                                          | 503,282                                                       | 140         | 99.9%                   |
| Diphtheria                                       | 175,885                                                       | 0           | 100.0%                  |
| Mumps                                            | 152,209                                                       | 454         | 99.7%                   |
| Pertussis                                        | 147,271                                                       | 10,735      | 92.7%                   |
| Smallpox                                         | 48,164                                                        | 0 70        | 100.0%                  |
| Rubella                                          | 47,745                                                        | 16          | 99.9%                   |
| Haemophilus influenzae type b, invasive <5 yrs.) | 20,000                                                        | 30          | 99.9%                   |
| Polio, paralytic                                 | 16,316                                                        | 0           | 100%                    |
| Tetanus                                          | 1,314                                                         | 19          | 98.6%                   |


<sup>\*</sup>Provisional

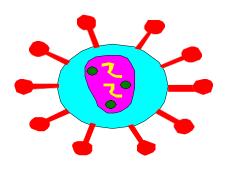
Source: MMWR 4/2/99, 12/25/09, 3/12/2010



#### An HIV Vaccine is More Challenging

- The only people who have a <u>natural</u> protective immunity to HIV are those with a genetic mutation to their CCR5 receptor (mostly of Western European ancestry).
- We have to do better than Mother Nature need to induce "unnatural" protective immunity.
- This immunity needs to be a rapid response, and in all the right locations.




#### Vaccines Explained

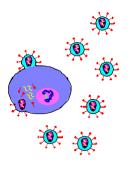
- A vaccine can be preventive, therapeutic, or both
- Preventive HIV vaccines for HIV-negative populations are being developed to control the spread of HIV and are not a cure for AIDS
- Researchers are also evaluating therapeutic vaccines to treat people who are already HIV+ or living with AIDS



#### How Does a Vaccine Work?

By teaching the body to recognize and fight invaders.




Body Recognizes HIV Virus

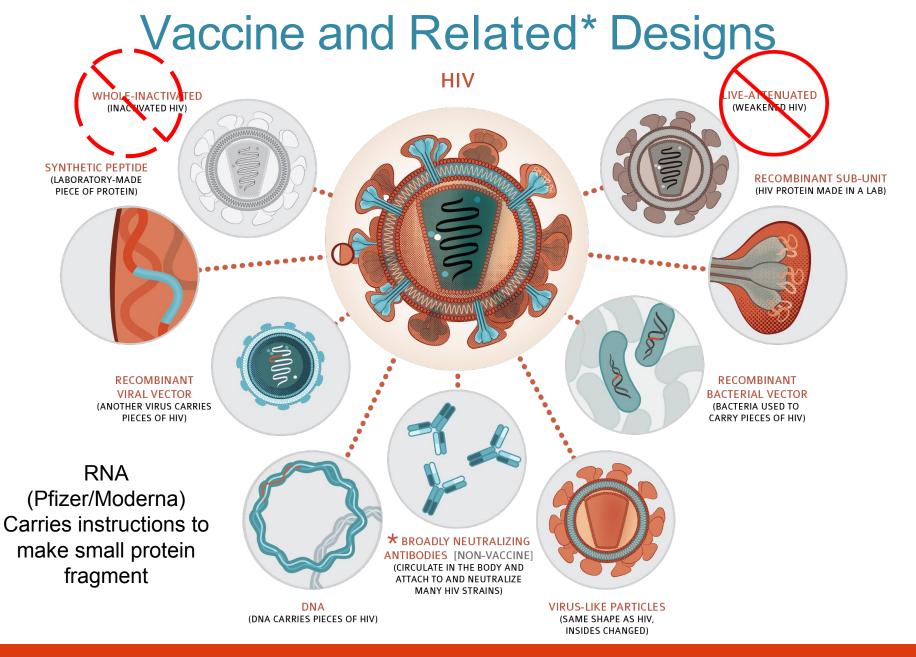


Body – Sounds Alarm



Fighter Cells Go Into Action




GOAL - HIV is controlled or killed

#### Traditional Approaches for Developing a Vaccine

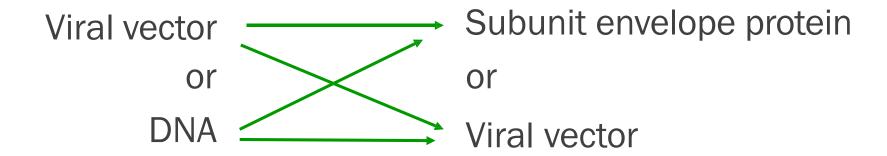


- Live attenuated vaccines
- Whole virus inactivated vaccines
- Challenging for HIV hard to manufacture, and have caused disease in animals










#### Vaccine Strategies

#### Prime-Boost vaccine strategy



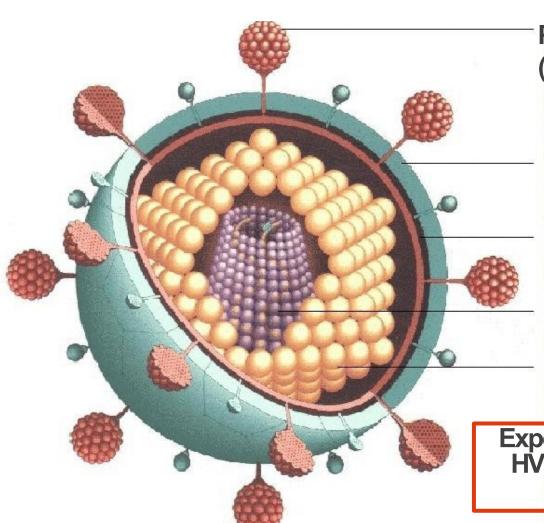
<u>Prime</u> <u>Boost</u>



#### DESIGNING HIV VACCINES






#### Variables in HIV Vaccine Development

- Vaccine modality: whole killed, attenuated, DNA, peptide, recombinant proteins, VLPs, viral vectors (vaccinia, MVA, VSV, Ad, HSV, canarypox, etc.), chimeras
- Gene(s): env, gag, tat, nef, rev, pol, vif, vpu, vpr, mosaics
- Adjuvant: alum, cytokines, MF-59, GM-CSF, etc.
- Dose
- Route: intradermal, intramuscular, etc.
- Timing: how many injections, how far apart
- Methods of administration: needle and syringe, Biojector, using electroporation, etc.





#### HIV Viral Structure



Proteins on the viral envelope (e.g. gp120)

Membrane or envelope (env)

**Matrix proteins** 

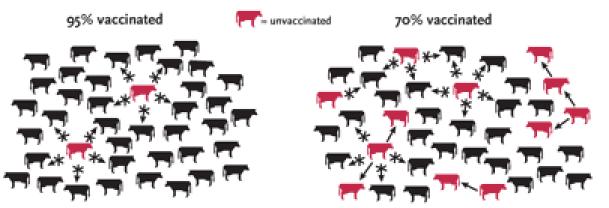
Nucleus (genes) (e.g., Gag, Pol, Nef, Tat)

Core proteins (e.g. p24, p17)

Experimental vaccines tested in the HVTN today do <u>not</u> include whole, killed or weakened HIV

#### HOW AN HIV VACCINE MIGHT WORK




## What Might a Preventive HIV Vaccine Do?











#### Benefits for the person who gets the vaccine:

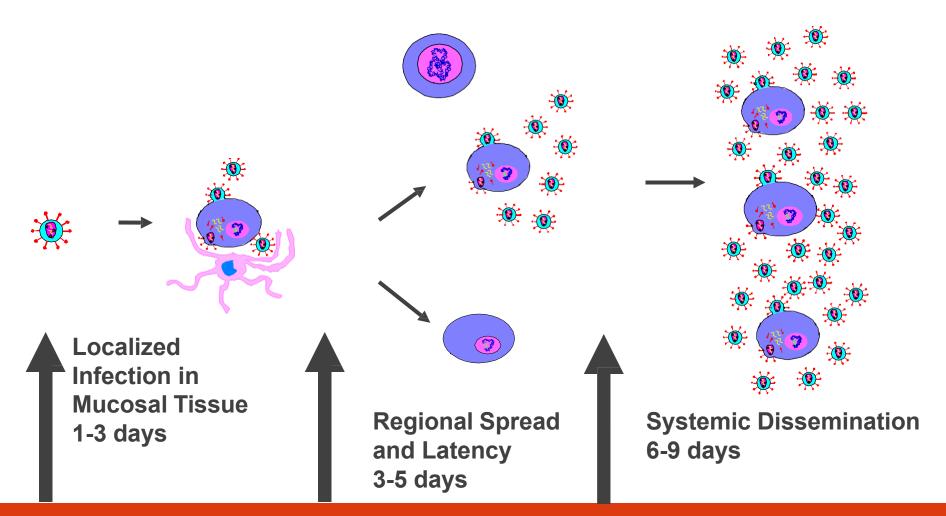
- Prevent infection
- Prevent disease
- Delay disease progression

#### Benefits for the entire community:

- Prevent further transmission
- Create "herd" immunity

#### How an HIV Vaccine Might Work




C. Stop Progression

- Effective in most people?
- Effective in some people?

Solid line – viral load in natural HIV infection Dotted line – potential changes due to vaccination



## What is the Time Frame for these Immune Responses?





#### TRYING NEW IDEAS



#### New Idea

All infected people make neutralizing antibodies, but not all antibodies are created equal....

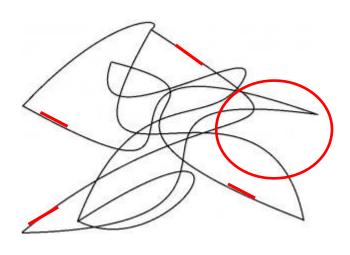
Strain-specific antibodies

**Broadly Neutralizing antibodies** 








With thanks to Prof. Penny Moore





# What do these antibodies do? Example: VRC01 attaches to the CD4 binding site on gp120

#### The GP120 Protein



Red lines = linear epitopes Red circle = the CD4 binding site

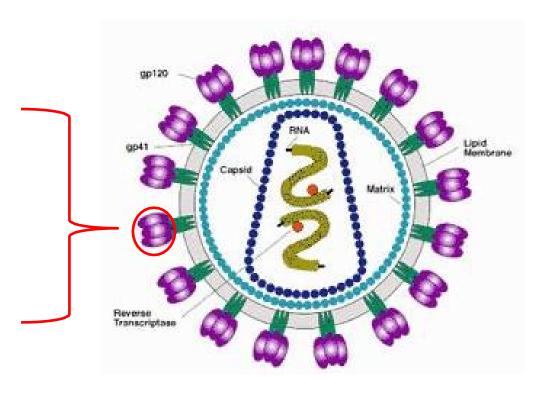



Image credit: NIAID



#### Gray-Gp120

Redthe CD4 binding site on gp120

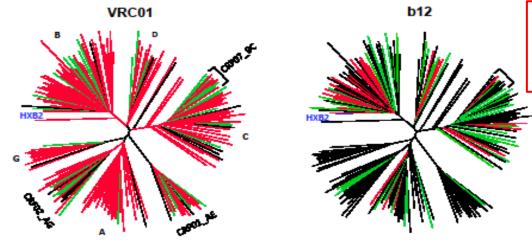

Green & Purple – the VRC01 antibody attached to the CD4 binding site

Image Credit: NIAID Vaccine Research Center





gp160 protein distance Neighbor-Joining tree 0.01



| D12    | П              |
|--------|----------------|
| HOREZ. | [<br>  [<br> - |
|        |                |

| = killed HIV!          |
|------------------------|
| = partially killed HIV |
| = did not kill HIV     |

|             |                      | IC <sub>60</sub> < 50 μg/ml |     | IC <sub>60</sub> < 1 μg/ml |     |
|-------------|----------------------|-----------------------------|-----|----------------------------|-----|
| Virus clade | Number of<br>viruses | VRC01                       | b12 | VRC01                      | b12 |
| Α           | 22                   | 100%                        | 45% | 95%                        | 23% |
| В           | 49                   | 96%                         | 63% | 80%                        | 39% |
| C           | 38                   | 87%                         | 47% | 66%                        | 13% |
| D           | 8                    | 88%                         | 63% | 50%                        | 25% |
| CRF01_AE    | 18                   | 89%                         | 6%  | 61%                        | 0%  |
| CRF02_AG    | 16                   | 81%                         | 19% | 56%                        | 0%  |
| G           | 10                   | 90%                         | 0%  | 90%                        | 0%  |
| CRF07_BC    | 11                   | 100%                        | 27% | 45%                        | 9%  |
| Other       | 18                   | 83%                         | 33% | 78%                        | 6%  |
| Total       | 190                  | 91%                         | 41% | 72%                        | 17% |

With thanks to Dr. Barney Graham











#### HVTN 703/HPTN 081 HVTN 704/HPTN 085



# The AMP Studies: HVTN 703/HPTN 081 & HVTN 704/HPTN 085

- AMP stands for <u>Antibody Mediated Prevention</u>
- These are the first studies testing whether a broadly neutralizing antibody can prevent HIV infection, and if it can, what dose is needed
- 703/081 enrolled1500 women in sub-Saharan Africa
- 704/085 enrolled 2700 men and transgender people who have sex with men in the Americas and Switzerland



# Study Schema for The AMP Studies

**HVTN 704/HPTN 085** 

**HVTN 703/HPTN 081** 







REGIMEN

Americas & Switzerland

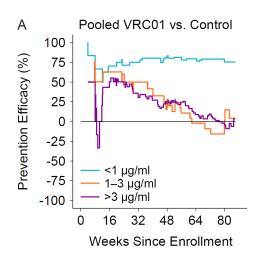
Women in sub-Saharan Africa

**TOTAL** 

VRC01 10 mg/kg 900 VRC01 30 mg/kg 900

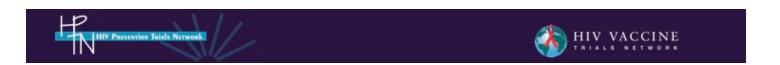
> Control 900

**Total** 2700 500 1300 1300 500 1300 500


> 1500 4200

10 infusions total; Infusions given every 8 weeks

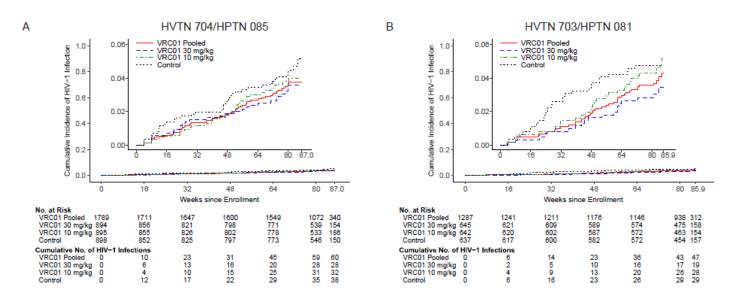
> **Study duration:** ~22 months




# Estimated PE Over Time by IC80 Prevention Efficacy Declines with IC80 Category (Pooled Trials)



B


| Control   19   2203   0.86   VRC01 Pooled   9   4427   0.20   75.4 (45.5, 88.9)                                                                         | Pre-<br>Specified<br>IC <sub>80</sub><br>Category | Treatment<br>Arm | No. of<br>HIV-1 | No. of<br>Person- |       | •                  |          |  |  |   |   |   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------|-----------------|-------------------|-------|--------------------|----------|--|--|---|---|---|--|
| VRC01 Pooled 9 4427 0.20 75.4 (45.5, 88.9)  1-3 μg/ml Control 10 2203 0.45  VRC01 Pooled 19 4427 0.43 4.2 (-108.7, 56.0)  >3 μg/ml Control 35 2203 1.59 | Category                                          | AIIII            | Inf.            | Years             | Years | PE (95% CI)        |          |  |  |   |   |   |  |
| 1-3 μg/ml Control 10 2203 0.45<br>VRC01 Pooled 19 4427 0.43 4.2 (-108.7, 56.0) ←                                                                        | <1 µg/ml                                          | Control          | 19              | 2203              | 0.86  |                    |          |  |  |   |   |   |  |
| VRC01 Pooled 19 4427 0.43 4.2 (−108.7, 56.0) ←                                                                                                          |                                                   | VRC01 Pooled     | 9               | 4427              | 0.20  | 75.4 (45.5, 88.9)  |          |  |  |   |   | • |  |
| >3 μg/ml Control 35 2203 1.59                                                                                                                           | 1-3 µg/ml                                         | Control          | 10              | 2203              | 0.45  |                    |          |  |  |   |   |   |  |
|                                                                                                                                                         |                                                   | VRC01 Pooled     | 19              | 4427              | 0.43  | 4.2 (-108.7, 56.0) | <b>←</b> |  |  | - |   |   |  |
| VRC01 Pooled 70 4427 1.58 3.3 (–48.0, 36.8)                                                                                                             | >3 μg/ml                                          | Control          | 35              | 2203              | 1.59  |                    |          |  |  |   |   |   |  |
|                                                                                                                                                         |                                                   | VRC01 Pooled     | 70              | 4427              | 1.58  | 3.3 (-48.0, 36.8)  |          |  |  | - | _ |   |  |







# Cumulative incidence of overall HIV-1 acquisition in the two AMP trials.



| ,                 |                |                 |                   |                         |                    |          |                          |         |
|-------------------|----------------|-----------------|-------------------|-------------------------|--------------------|----------|--------------------------|---------|
|                   |                | No. of<br>HIV-1 | No. of<br>Person- | Rate per<br>100 Person- |                    |          |                          |         |
| Study             | Treatment arm  | Infections      | Years             | Years                   | PE (95% CI)        |          |                          | P-value |
| HVTN 704/HPTN 085 | Control        | 38              | 1275              | 2.98                    |                    |          |                          |         |
|                   | VRC01 Pooled   | 60              | 2555              | 2.35                    | 26.6 (-11.7, 51.8) | )        | <del></del>              | 0.15    |
|                   | VRC01 10 mg/kg | 32              | 1281              | 2.50                    | 22.4 (-25.5, 52.0) | )        |                          | 0.30    |
|                   | VRC01 30 mg/kg | 28              | 1274              | 2.20                    | 30.9 (-13.9, 58.0) | )        | <del></del>              | 0.15    |
| HVTN 703/HPTN 081 | Control        | 29              | 935               | 3.10                    |                    |          |                          |         |
|                   | VRC01 Pooled   | 47              | 1889              | 2.49                    | 8.8 (-45.1, 42.6)  | )        |                          | 0.70    |
|                   | VRC01 10 mg/kg | 28              | 941               | 2.98                    | -9.3 (-85.3, 35.5) |          |                          | 0.74    |
|                   | VRC01 30 mg/kg | 19              | 948               | 2.00                    | 27.0 (-30.7, 59.3) | )        |                          | 0.29    |
| Pooled AMP Trials | Control        | 67              | 2207              | 3.04                    |                    |          |                          |         |
|                   | VRC01 Pooled   | 107             | 4436              | 2.41                    | 18.1 (-12.2, 40.2) | )        |                          | 0.21    |
|                   | VRC01 10 mg/kg | 60              | 2217              | 2.71                    | 7.2 (-33.3, 35.3)  | )        |                          | 0.69    |
|                   | VRC01 30 mg/kg | 47              | 2219              | 2.12                    | 29.0 (-4.0, 51.6)  |          | -                        | 0.08    |
|                   |                |                 |                   |                         |                    | -100 -80 | -60 -40 -20 0 20 40 60 8 | 0 100   |



# The AMP Trial Assumptions and the Eventual Reality

- Based upon the *in vitro* (test-tube) sensitivity assays from the global panel performed prior to initiation of the AMP trials, we assumed ~60-70% of strains would be sensitive to VRC01, at a cutoff of <10 ug/ml</li>
- In the AMP trial itself 47 (73%) of the 64 isolates in the control group exhibited ID80 <10 ug/ml to VRC01, so the predictive panels were ok
- However, only 30% of viruses in the placebo group circulating in the regions were in vivo sensitive (i.e., those with an IC80 <1ug/ml)</li>
- We were in effect a log off in estimating *in vivo* susceptibility to the antibody and this made 30% of the circulating strains susceptible, not 60%; affecting the overall power calculations
- Under these conditions the study had low power to detect overall efficacy



### **HVTN 704 status Conclusions:**

- We can achieve preventive efficacy in humans in the highrisk populations globally with passive administration of a bnAb.
- It is a landmark asset that we have a neutralizing antibody assay that can be used to calibrate future studies and animal models.
- It is clear multiple potent antibodies will be needed to make a clinical product.
- The virus is formidable. It has shown that again.
- But it is transformative to have a tool to predict success and the target needed to achieve highly effective preventive efficacy.

### **HVTN 130**

- Antibody infusion trial with different combinations of antibodies:
- Antibodies can work with each other to increase coverage of circulating viruses
- Need to see how compatible they are with each other.
- Goal: could a "cocktail" of antibodies provide lasting protection from infection

#### **HVTN 140**

- Just announced
- Antibody infusion trial with different combinations of antibodies:
- Antibodies can work with each other to increase coverage of circulating viruses
- Need to see how compatible they are with each other.
- Goal: could a "cocktail" of antibodies provide lasting protection from infection

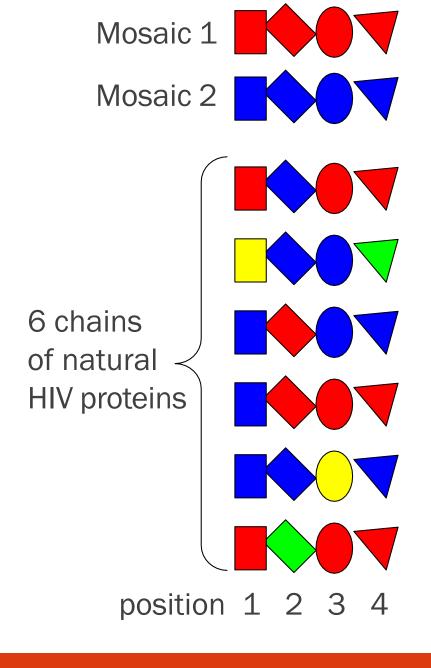
# Current phase 3 vaccine trial

 Mosaic - a way of teaching your body to recognize common HIV proteins, used as an HIV insert



## **Mosaics Are Chains of Proteins**

 A protein is a chain of amino acids, each one like a bead in a necklace. The mosaic sequence tells your cells which amino acid to include and where it goes in the chain.



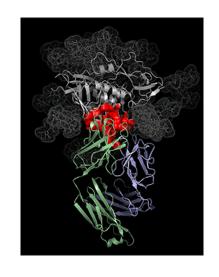

 This mosaic chain is designed to look like the HIV proteins that are most likely to be seen if the body is exposed to HIV.



## An Example

- Position 1 & 2: blue is most common, red is 2<sup>nd</sup> most common
- Position 3 & 4 are opposite
- The mosaics use the most common proteins and the 2<sup>nd</sup> most common
- The final 2 mosaics may not look anything like the natural chains
- Using several mosaics together in a vaccine gives you the broadest coverage of what might occur naturally






### HVTN 706 "Mosaico"

- "Heterologous" prime boost
- AD26.Mos5.HIV (GagPol and ENV DNA insert)
  - Low incidence of pre-exposure to Adenovirus 26
- Gp140 protein boost (clade C and Mosaic)
- Efficacy trial: 1900 participants in each arm (vaccine vs placebo)
- M0 M3 (Ad26.Mos4.HIV)
- M6 M12 (Ad26.Mos4.HIV+gp140)
- Enrolling now!

# Take-Home Messages

- Antibody-mediated prevention (AMP) using broadly neutralizing antibodies could be another way to prevent HIV infection.
- Trials of AMP may also teach us more about vaccine design: which antibodies are protective, how much of them do we need, etc.
- Mosaic a way of teaching your body to recognize common HIV proteins, used as an <u>HIV insert</u>, currently being tested in HVTN 106, HVTN 706 currently enrolling





### Compare and contrast HIV and SARS CoV-2

#### HIV-1 and SARS CoV-2 Similarities:

- RNA viruses: coronaviruses are the largest RNA viruses, genome 3x larger than HIV
- Enveloped viruses: lipid envelope, inactivated with detergent
- Each came from animal reservoirs: HIV from nonhuman primates, CoV-2 from bats or pangolins.

## Compare and contrast HIV and SARS CoV-2

#### HIV-1 and SARS CoV-2 Differences:

- HIV-1 much more variable, multiple species in the host "quasispecies"
- HIV-1 is a retrovirus, integrates into the host genome and establishes chronic infection (no known instance of spontaneous clearance)
- HIV-1 blood transmission
- CoV-2: Respiratory spread
- CoV-2: an "acute" viral infection, cleared by the host (no integration, no latent reservoir)
- This is likely why the current generation of vaccines were so successful



# Acknowledgements



#### **HVTN**

- Gail Broder
- Dr. Gaston Djomand
- Dr. Chuen-Yen Lau
- Dr. Barney Graham
- Dr. Shelly Karuna
- Dr. Cecilia Morgan
- Dr. John Hural
- Steve Wakefield
- Genevieve Meyer
- Carter Bentley

#### VUMC HIV Vaccine Clinical Research Site

- Greg Wilson
- Shonda Sumner
- Melissa Allison
- Jarissa Greenard
- Rita Smith
- Cindy Nochowicz
- Natalia Pusonja
- Eric Olson

THE HIV Vaccine Trials Network is supported through a cooperative agreement with the National Institute of Allergy and Infectious Diseases



