COVID-...22?

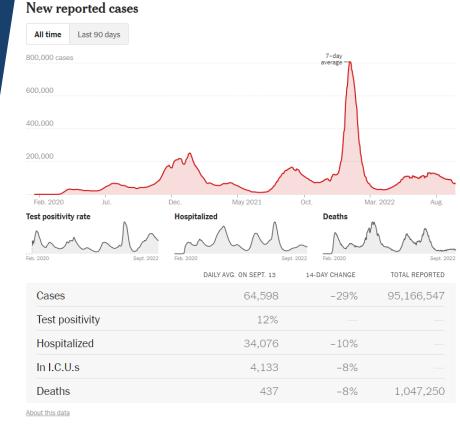
Where We Are, How We Got Here, and How This Ends

Christopher J. Hostler, MD, MPH


## Disclosures

► No relevant financial disclosures

## Agenda


- Where we are
  - Current epidemiology and trends
- ► How we got here
  - Vaccines
  - Therapeutics
  - Variants
- How this ends
  - ► CDC Mask Guidance
  - ► Struggles, FAQ, what I'll do, vulnerabilities and silver linings

## Where are we?



# National Epidemiology

- Over 25% of Americans documented to have had COVID and over 70% estimated to have had COVID since 1/2020
- Proportional mortality drastically reduced with Omicron
- Deaths have been fairly stable since March 2022



#### Vaccinations

|           | FULLY VACCINATED | WITH A BOOSTER |
|-----------|------------------|----------------|
| All ages  | 68%              | 33%            |
| 65 and up | 92%              | 65%            |

#### See more details

About this d

#### State of the virus

Update for September 8

- Known coronavirus cases have fallen significantly in recent weeks, with the national average falling below 90,000 cases per day just before Labor Day.
- The holiday has skewed current figures somewhat, since many states reported delayed or incomplete data in the aftermath of the long weekend. Still, case counts are in far better shape today than a month ago, when nearly 120,000 cases were announced each day.
- Cases have decreased over the past two weeks in all but a handful of states. In the Northwest, <u>Washington</u> and <u>Oregon</u> have both seen cases fall by more than 20 percent.
- Hospitalizations have also seen sustained improvement, Fewer than 35,000 people are



+ableau

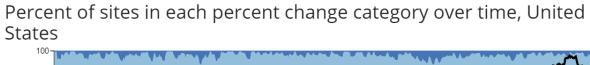
Regional proportions from

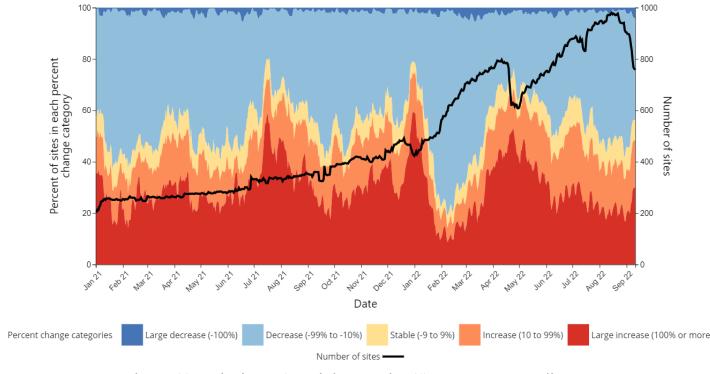
collected the week ending
US Territories not shown a

AS, FM, GU, MH, MP, PW

HHS regions:

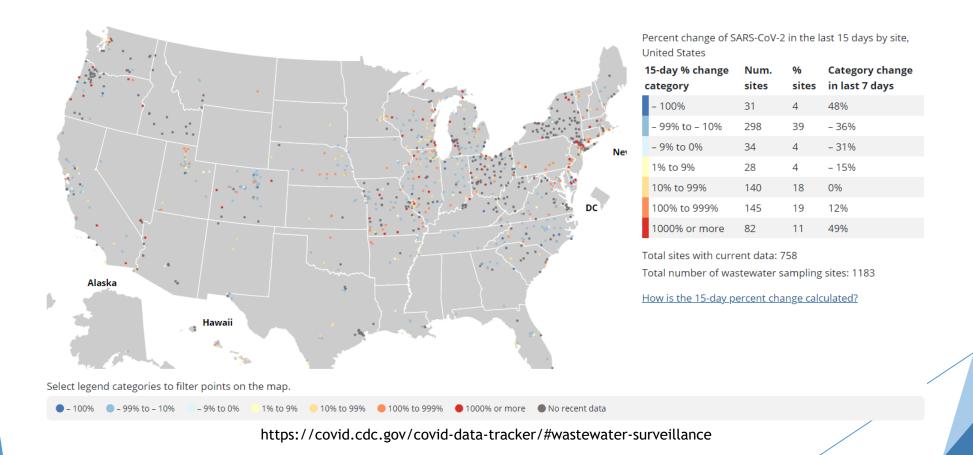
PR, VI - Region 2


← → □ ▼ ← &


National Epidemiology

Collection date, week ending

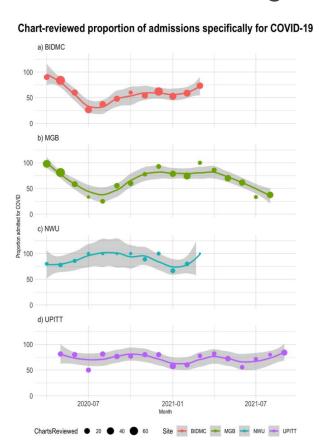
with B.1.1.529, as they currently cannot be reliably called in each region. Except BA.2.12.1, BA.2 sublineages are aggregated with BA.2. Except BA.4.6, sublineages of BA.4 are aggregated to BA.4. Sublineages of BA.5 are aggregated.


## Wastewater Monitoring

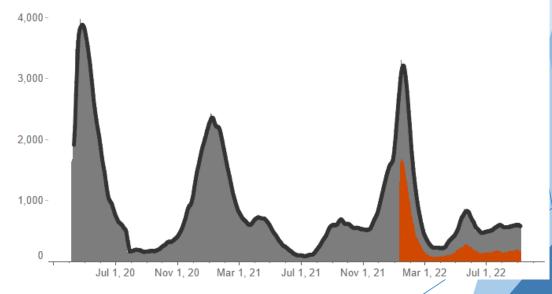




https://covid.cdc.gov/covid-data-tracker/#wastewater-surveillance


## Wastewater Change Map




## Hospitalizations - Primary vs. Incidental

#### Ancestral strain through Alpha

#### **Omicron Era**



Number of patients with COVID-19 in the hospital, 7-day average, and Patients primarily hospitalized for COVID related illness. All time \*Data on patients hospitalized primarily due to COVID-19 were first collected on 1/10/2022 and are not available for prior dates.



## So where are we?

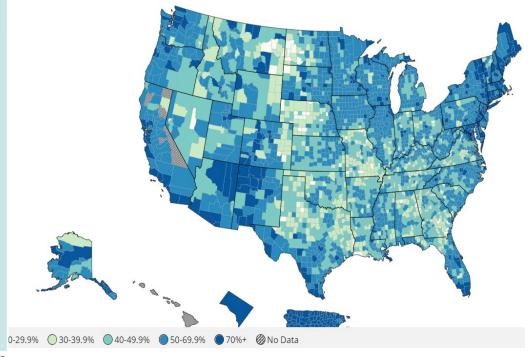


## Hostler's Conditions of Endemicity


- Decreased severity of illness
  - Vaccination
  - Omicron
- Ability to protect yourself and others
  - Vaccination
  - PPE
- Behavioral changes
  - Stay home/wear a mask when sick
- Ability to remain flexible
  - We'll be able to do this in health care but anticipate big societal issues here, which we'll probably pay for

# How did we get here?




"You just GOTTA do things the hard way, don't ya."

### **Vaccines**



- 4 effective and safe vaccines widely available in the United States
- Everyone 6mo+ eligible and encouraged
- Bivalent boosters now available

| At Least One Dose            | Fully Vaccinated | First Booster Dose | Second Booster Dose      |
|------------------------------|------------------|--------------------|--------------------------|
| Vaccinated People            |                  | Count              | Percent of US Population |
| Total                        |                  | 263,103,582        | 79.2%                    |
| Population ≥ 5 Years of Age  |                  | 261,793,204        | 83.8%                    |
| Population ≥ 12 Years of Age |                  | 250,806,049        | 88.5%                    |
| Population ≥ 18 Years of Age |                  | 232,901,518        | 90.2%                    |
| Population ≥ 65 Years of Age |                  | 57,488,420         | 95%                      |
|                              |                  |                    |                          |

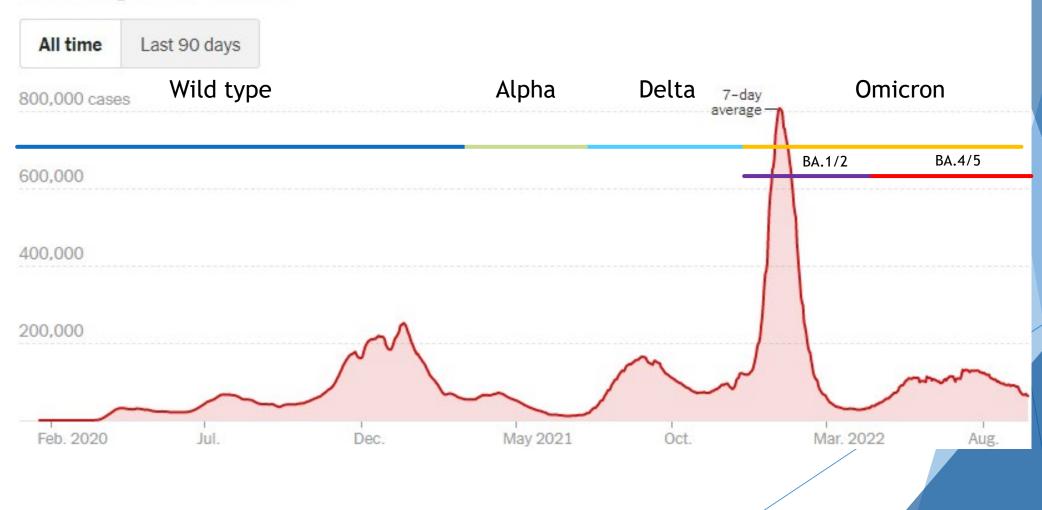


CDC | Data as of: September 7, 2022 6:00am ET. Posted: September 8, 2022

# Vaccines

## **COVID Therapeutics**

- Pre-exposure:
  - Evusheld (IM)
- Early outpatient therapy:
  - ▶ 1) Nirmatrelvir/ritonavir (PO)
  - ▶ 2) Remdesivir (IV)
  - ▶ 3) Bebtelovimab (IV)
  - ▶ 3) Molnupiravir (PO)

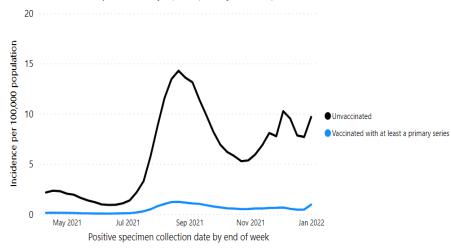

- Inpatient Therapeutics
  - Remdesivir
  - Dexamethasone
  - Baricitinib
  - Tocilizumab

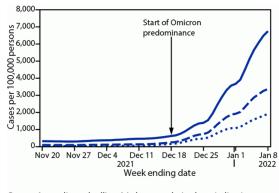
## Therapeutic struggles

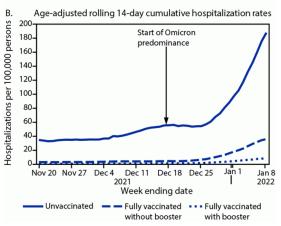
- No significant movement in appropriate therapies for inpatients
- ▶ No change in therapeutics in about 9 months (except removal of sotrovimab)
- Restrictions on EUA therapies make them difficult to distribute and tailor therapies for individuals
  - Individual benefit
  - Public health benefit
- A LOT of drug interactions for the most effective oral therapy
- Supply remains an issue

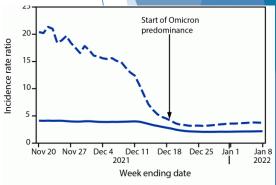
## **Variants**

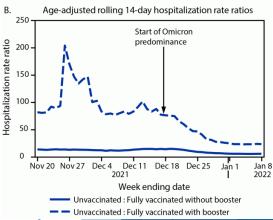
### New reported cases





## The Omicron Effect


#### Rates of COVID-19 Deaths by Vaccination Status


April 04 - January 01, 2022 (26 U.S. jurisdictions)


Select Outcome
Cases
Deaths











## **Vaccine Effectiveness**

Table 4a. Consensus estimates of vaccine effectiveness against BA.1 or BA.2 Omicron for 2 doses and 3 doses of COVID-19 vaccine compared to unvaccinated individuals

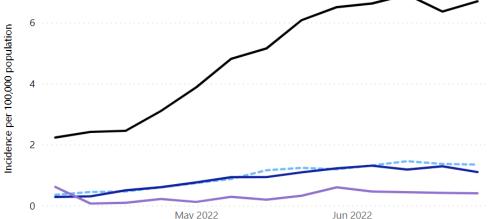
| Vaccine product for<br>primary course | Outcome         | Second dose: 0 to<br>3 months | Second dose: 4 to 6 months | Second dose: 6+<br>months | Booster dose: all periods | Booster dose: 0 to 3 months | Booster dose: 4 to 6 months | Booster dose: 6+<br>months |
|---------------------------------------|-----------------|-------------------------------|----------------------------|---------------------------|---------------------------|-----------------------------|-----------------------------|----------------------------|
|                                       | All Infection   | 30% (20 to 40%)               | 0 to 30% (range only)      | 0% (0 to 10%)             | See individual periods    | 40% (30 to 50%)             | 20% (10 to 30%)             | 0% (0 to 10%)              |
|                                       | Symptomatic     | 40% (30 to 50%)               | 20% (5 to 30%)             | 5% (0 to 5%)              | See individual periods    | 60% (50 to 70%)             | 40% (30 to 50%)             | 10% (0 to 20%)             |
| AstraZeneca                           | Hospitalisation | 85% (60 to 90%)               | 70% (50 to 75%)            | 65% (45 to 85%)           | See individual periods    | 90% (85 to 95%)             | 85% (85 to 95%)             | 70% (50 to 85%)            |
|                                       | Mortality       | Insufficient data             | Insufficient data          | Insufficient data         | See individual periods    | 90% (85 to 98%)             | Insufficient data           | Insufficient data          |
|                                       | Transmission    | Insufficient data             | Insufficient data          | Insufficient data         | Insufficient data         | Insufficient data           | Insufficient data           | Insufficient data          |
|                                       | All Infection   | 30% (20 to 40%)               | 0 to 30% (range only)      | 30% (10 to 50%)           | See individual periods    | 40% (30 to 50%)             | 20% (10 to 30%)             | 0% (0 to 10%)              |
|                                       | Symptomatic     | 55% (35 to 75%)               | 30% (15 to 35%)            | 15% (10 to 20%)           | See individual periods    | 65% (55 to 75%)             | 40% (30 to 50%)             | 10% (0 to 20%)             |
| Moderna                               | Hospitalisation | 85 to 95% (range only)        | 75 to 85% (range only)     | 55 to 90% (range only)    | See individual periods    | 85 to 95% (range only)      | Insufficient data           | Insufficient data          |
|                                       | Mortality       | Insufficient data             | Insufficient data          | Insufficient data         | Insufficient data         | Insufficient data           | Insufficient data           | Insufficient data          |
|                                       | Transmission    | Insufficient data             | Insufficient data          | Insufficient data         | Insufficient data         | Insufficient data           | Insufficient data           | Insufficient data          |
|                                       | All infection   | 30% (20 to 40%)               | 0 to 30% (range only)      | 20% (10 to 30%)           | See individual periods    | 40% (30 to 50%)             | 20% (10 to 30%)             | 0% (0 to 10%)              |
| Direct                                | Symptomatic     | 50% (30 to 65%)               | 20% (15 to 30%)            | 15% (10 to 15%)           | See individual periods    | 65% (55 to 75%)             | 45% (35 to 55%)             | 10% (0 to 20%)             |
| Pfizer                                | Hospitalisation | 90% (85 to 95%)               | 80% (75 to 85%)            | 70% (55 to 90%)           | See individual periods    | 90% (85 to 95%)             | 85% (85 to 95%)             | 70% (50 to 85%)            |
|                                       | Mortality       | Insufficient data             | Insufficient data          | Insufficient data         | See individual periods    | 90% (85 to 98%)             | Insufficient data           | Insufficient data          |
|                                       | Transmission    | Insufficient data             | Insufficient data          | Insufficient data         | 0 to 25% (range only)     | Insufficient data           | Insufficient data           | Insufficient data          |

### **Vaccine Effectiveness**

#### Rates of COVID-19 Deaths by Vaccination Status and 2+ Booster Doses\* in Ages 50+ Years

Select Outcome

April 03, 2022–July 02, 2022 (25 U.S. jurisdictions)


Deaths
Cases

Outcome

April 03, 2022–July 02, 2022 (25 U.S. jurisdictions)

Primary series and 1 booster dose\*

Primary series and 2+ booster doses\*



Positive specimen collection date by start of week

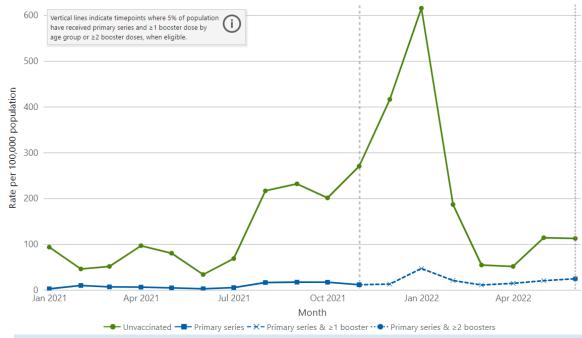
In June 2022, among people ages 50 years and older, unvaccinated people had:

14X

Risk of Dying from COVID-19

compared to people vaccinated with a primary series and two or more booster doses.\*

Among people ages 50 years and older, vaccinated people with a primary series and one booster dose had:


3X

compared to people vaccinated with a primary series and two or more booster doses.\*

Risk of Dying from COVID-19

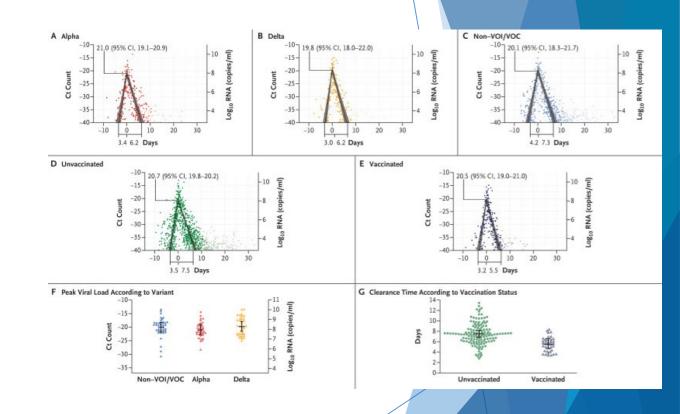
Source: CDC COVID-19 Response, Epidemiology Task Force, Surveillance & Analytics Team, Vaccine Breakthrough Unit

### Age-Adjusted Rates of COVID-19-Associated Hospitalization by Vaccination Status in Patients ages ≥18 Years January 2021 - June 2022



In June 2022, compared to people who are up to date with COVID-19 vaccination, monthly rates of COVID-19-associated hospitalizations were **4.6x Higher in Unvaccinated Adults Ages 18 Years and Older.** 

1.7x Higher in Unvaccinated Children Ages 5-11 Years


2.0x Higher in Unvaccinated Adolescents Ages 12-17 Years 2.8x Higher in Unvaccinated Adults Ages 18-49 Years

**3.6**X Higher in Unvaccinated Adults Ages 50-64 Years

**6.3**X Higher in Unvaccinated Adults Ages 65 Years and Older

## Change in Viral Dynamics

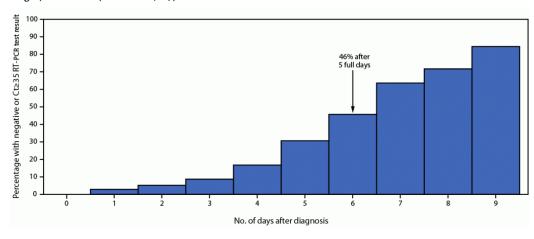
- Alpha and Delta shed for shorter duration than wild type
- Clearance time significantly shorter in vaccinated populations



https://www.nejm.org/doi/10.1056/NEJMc2102507?url\_ver=Z39.88-2003&rfr\_id=ori:rid:crossref.org&rfr\_dat=cr\_pub%20%200pubmed

#### Morbidity and Mortality Weekly Report (MMWR)





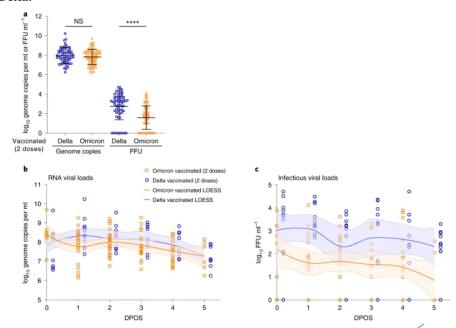

Results from a Test-to-Release from Isolation Strategy Among Fully Vaccinated National Football League Players and Staff Members with COVID-19 — United States, December 14–19, 2021

Weekly / February 25, 2022 / 71(8);299-305

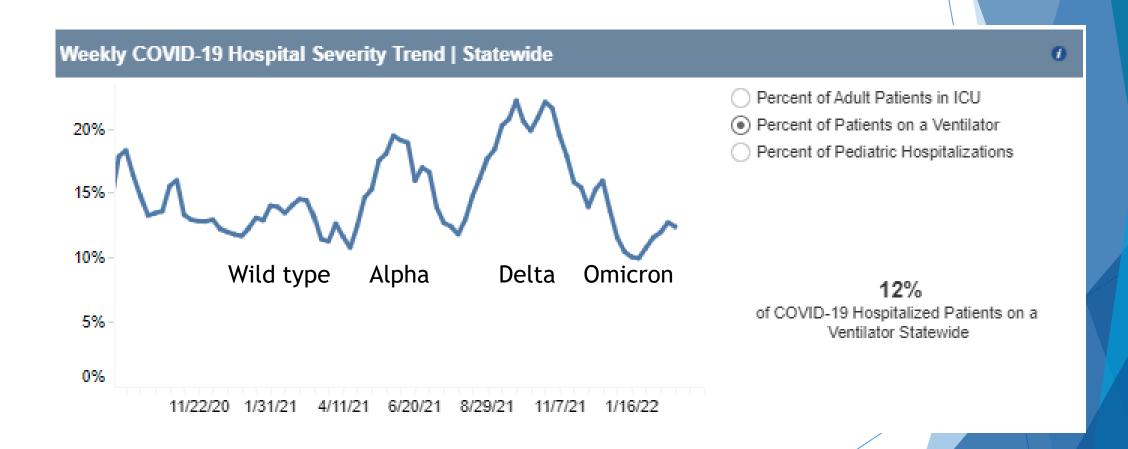
Christina D. Mack, PhD¹; Erin B. Wasserman, PhD¹; Marie E. Killerby, VetMB²; Rieza H. Soelaeman, PhD²; Aron J. Hall, DVM²; Adam MacNeil, PhD²; Deverick J. Anderson, MD³; Patti Walton, MHSA⁴; Saamir Pasha, MPH¹; Emily Myers⁵; Catherine S. OʻNeal, MD⁶; Christopher J. Hostler, MD³; Navdeep Singh, MD¬; Thom Mayer, MDⴰ; Allen Sills, MD⁵ (View author affiliations)

#### FIGURE 1. Percentage of 173 fully vaccinated\* COVID-19 patients (SARS-CoV-2 B.1.1.529 [Omicron] and unsequenced') with a negative or cycle-threshold $\geq$ 35<sup>8</sup> reverse transcription-polymerase chain reaction test result, by number of days after diagnosis — National Football League, United States, December 14-19, 2021

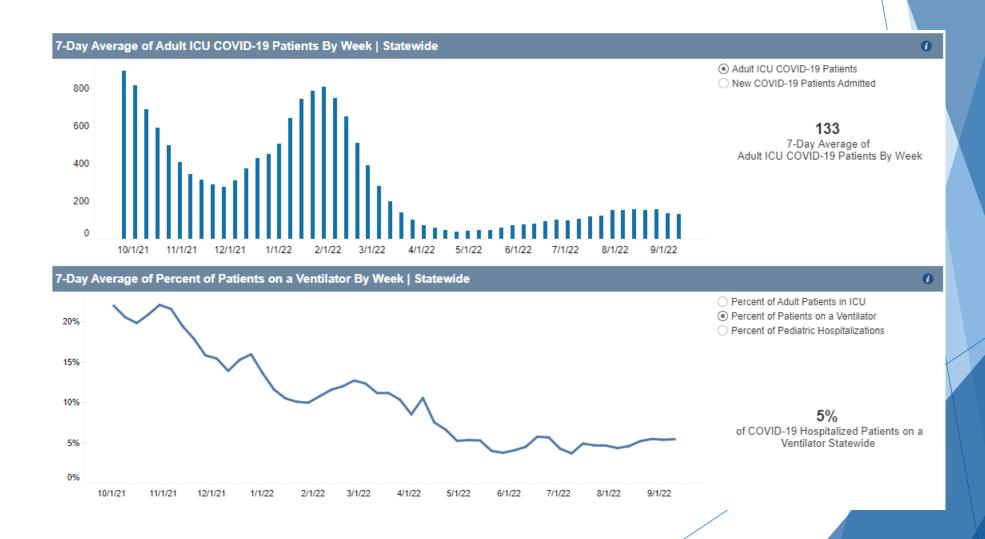



# Change in Viral Dynamics

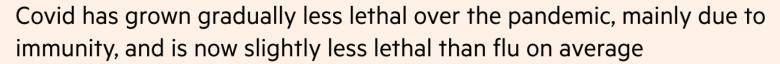
- Omicron sheds for even shorter duration than Alpha or Delta
- ► Time to negativity among vaccinated individuals about 2 days shorter than Delta
- Supportive of decreased isolation time


## Change in Viral Dynamics

- Infectious titers for vaccinated individuals with Omicron lower than Delta
- Viral loads declined similarly but infectious viral loads declined faster with Omicron than Delta


Fig. 4: SARS-CoV-2 infectious VLs in vaccine breakthrough infections with Omicron or Delta.




## Change in Severity of Illness



## Change in Severity of Illness



## Change in Severity of Illness



Evolution of Covid-19's infection fatality ratio\* in England, relative to seasonal flu



<sup>\*</sup>Covid IFR calculated using ONS death cert. mentions and ONS infection survey. \*\*IFR for seasonal flu as calculated for New Zealand in BMJ Source: ONS. Based on prior work by Dan Howdon FT graphic: John Burn-Murdoch / @jburnmurdoch © FT

## How does this end?

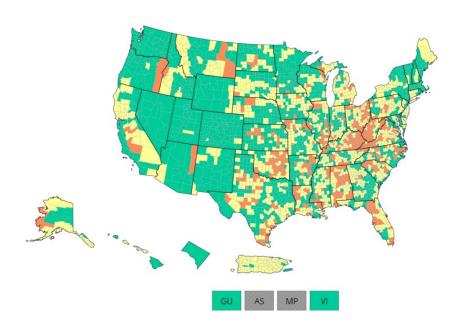
- Not with a bang, but a whimper
  - ► COVID will not be eradicated
  - Areas of the world will not all arrive at endemicity at the same time
  - Continue to see relative decline in severity of illness as it continues to circulate
- ► Transition from public health measures to individual health measures
- ► How we prepare for the future remains to be seen...but I'm not optimistic

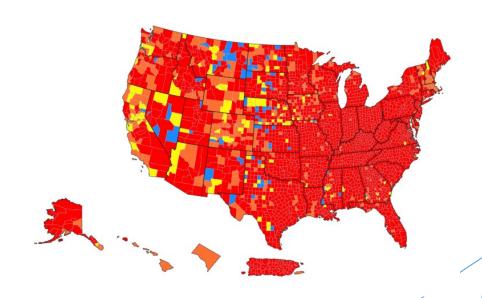
## CDC Public Mask Guidance

- Takes into account new COVID-19 admissions per 100K population, % staffed inpatient beds occupied by COVID-19 patients, and new COVID-19 cases per 100K population over 7- day span
- Does NOT apply to healthcare settings or public transportation

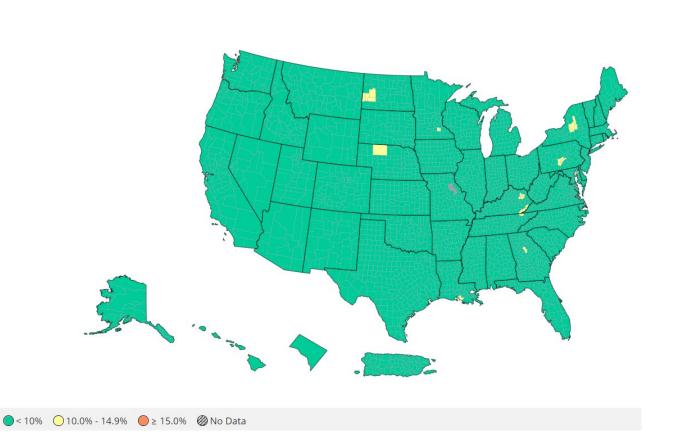
| COVID-19 Community Levels – Use the Highest Level that Applies to Your Community |                                                                                 |        |            |        |  |  |  |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------|------------|--------|--|--|--|
| New COVID-19 Cases<br>Per 100,000 people in<br>the past 7 days                   | Indicators                                                                      | Low    | Medium     | High   |  |  |  |
|                                                                                  | New COVID-19 admissions per 100,000 population (7-day total)                    | <10.0  | 10.0-19.9  | ≥20.0  |  |  |  |
| Fewer than 200                                                                   | Percent of staffed inpatient beds occupied by COVID-19 patients (7-day average) | <10.0% | 10.0-14.9% | ≥15.0% |  |  |  |
|                                                                                  | New COVID-19 admissions per 100,000 population (7-day total)                    | NA     | <10.0      | ≥10.0  |  |  |  |
| 200 or more                                                                      | Percent of staffed inpatient beds occupied by COVID-19 patients (7-day average) | NA     | <10.0%     | ≥10.0% |  |  |  |

The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days


To find out the COVID-19 community level:


- First determine whether a county, state, or territory has fewer than 200 new cases per 100,000 people in the past 7 days or 200 new cases or more per 100,000 people in the past 7 days.
- Then, determine the level (low, medium, or high) for the new admissions and inpatient beds and indicators using the scale for the area's number for new cases
- The COVID-19 Community Level is based on the higher of the new admissions and inpatient beds metrics.
- · Check your county's COVID-19 Community Level.

## CDC Public Mask Guidance


CDC Community Level - 9/8/2022

CDC Transmission Level - 9/13/2022





# % Staffed Inpatient Beds with COVID Patients - 9/12/2022



# Where people will struggle most

- Individualized, situation specific risk:benefit calculation
- PTSD from the last couple years
- Recognition of the changing dynamics - COVID-22 now is not the same as COVID-19

#### **Risk of COVID-19 Hospitalization**

Analysis from logistic regression on confirmed cases and hospitalizations Dec 14 - Jan 4.

|                         |           | Female  |        |         | Female Male |         |        |         | Model estimates* of the proportion of |                                                                                               |
|-------------------------|-----------|---------|--------|---------|-------------|---------|--------|---------|---------------------------------------|-----------------------------------------------------------------------------------------------|
| # of at-risk conditions | Age group | 0 Doses | 1 Dose | 2 Doses | 3 Doses     | 0 Doses | 1 Dose | 2 Doses | 3 Doses                               | cases that would result in hospitalization by demographic group and vaccine status            |
| 0 at-risk conditions    | <20       | 0.3%    | 0.1%   | 0.1%    | 0.0%        | 0.4%    | 0.2%   | 0.1%    | 0.0%                                  | _                                                                                             |
|                         | 20-39     | 1.5%    | 0.5%   | 0.4%    | 0.2%        | 1.8%    | 0.7%   | 0.4%    | 0.2%                                  |                                                                                               |
|                         | 40-49     | 1.9%    | 0.7%   | 0.4%    | 0.2%        | 2.3%    | 0.8%   | 0.5%    | 0.3%                                  |                                                                                               |
|                         | 50-59     | 2.7%    | 1.0%   | 0.6%    | 0.3%        | 3.2%    | 1.2%   | 0.8%    | 0.4%                                  | Hospitalization risk for younger people with two                                              |
|                         | 60-69     | 2.9%    | 1.1%   | 0.7%    | 0.3%        | 3.6%    | 1.3%   | 0.8%    | 0.4%                                  | or more doses approaches zero                                                                 |
|                         | 70-79     | 5.2%    | 1.8%   | 1.2%    | 0.6%        | 6.3%    | 2.2%   | 1.5%    | 0.7%                                  |                                                                                               |
|                         | +08       | 9.5%    | 3.3%   | 2.2%    | 1.1%        | 11.8%   | 4.0%   | 2.7%    | 1.3%                                  |                                                                                               |
| 1-2 at-risk conditions  | <20       | 0.9%    | 0.3%   | 0.2%    | 0.1%        | 1.2%    | 0.4%   | 0.3%    | 0.1%                                  |                                                                                               |
|                         | 20-39     | 4.5%    | 1.7%   | 1.1%    | 0.5%        | 4.7%    | 1.8%   | 1.1%    | 0.6%                                  |                                                                                               |
|                         | 40-49     | 5.2%    | 1.9%   | 1.2%    | 0.6%        | 5.9%    | 2.2%   | 1.3%    | 0.7%                                  |                                                                                               |
|                         | 50-59     | 6.8%    | 2.6%   | 1.6%    | 0.8%        | 8.3%    | 3.2%   | 1.9%    | 1.0%                                  |                                                                                               |
|                         | 60-69     | 7.5%    | 3.0%   | 1.8%    | 0.9%        | 9.5%    | 3.6%   | 2.2%    | 1.1%                                  |                                                                                               |
|                         | 70-79     | 13.9%   | 5.4%   | 3.3%    | 1.6%        | 17.2%   | 6.9%   | 4.2%    | 2.0%                                  |                                                                                               |
|                         | +08       | 26.2%   | 9.7%   | 6.2%    | 2.9%        | 33.9%   | 13.1%  | 8.1%    | 3.9%                                  | Even with 3 doses, substantial                                                                |
| 3+ at-risk conditions   | <20       | 5.5%    | 1.8%   | 1.3%    | 0.5%        | 7.3%    | 1.8%   | 1.4%    | 1.4%                                  | risk observed for those over                                                                  |
|                         | 20-39     | 23.0%   | 10.6%  | 5.1%    | 2.9%        | 25.2%   | 11.0%  | 6.6%    | 3.6%                                  |                                                                                               |
|                         | 40-49     | 26.2%   | 10.6%  | 5.8%    | 3.6%        | 35.6%   | 8.3%   | 6.5%    | 4.0%                                  | risk conditions present                                                                       |
|                         | 50-59     | 36.0%   | 13.2%  | 7.7%    | 4.3%        | 37.0%   | 12.3%  | 8.9%    | 5.1%                                  | risk conditions present                                                                       |
|                         | 60-69     | 33.2%   | 14.8%  | 7.6%    | 3.9%        | 40.3%   | 16.2%  | 9.4%    | 5.0%                                  |                                                                                               |
|                         | 70-79     | 50.1%   | 23.2%  | 12.8%   | 5.9%        | 59.6%   | 26.6%  | 15.9%   | 7.5%                                  |                                                                                               |
|                         | +08       | 71.9%   | 31.8%  | 20.7%   | 9.4%        | 83.7%   | 43.8%  | 26.3%   | 12.7%                                 | becomes available. Differences between same-color cells may not be statistically significant. |
|                         |           |         |        |         |             |         |        |         |                                       | constituy not be statistically significant.                                                   |

## How to think about risk

# 2014 Mortality Risk from Non-COVID Activities

| Activity                      | Unit              | MM                         |
|-------------------------------|-------------------|----------------------------|
| Flight                        | One flight        | 0.02                       |
| Driving                       | 250 miles         | 1                          |
| Motorcycle                    | 25 miles          | 4                          |
| General anesthesia            | 1 procedure       | 5                          |
| Scuba diving                  | 1 trip            | 5                          |
| Skydiving                     | 1 trip            | 7                          |
| Driving                       | Annual            | 100 (U.S.); 31 (U.K.)      |
| Giving birth                  | 1 birth           | 210 (U.S.), 120 (U.K.), 40 |
|                               |                   | (Sweden), 11,000 (Chad)    |
| Active service in Afghanistan | Full year in 2011 | 5,000                      |
| Baby's first year of life     | 1 year            | 6,600                      |
| Heroin use                    | 1 year            | 19,700                     |

Blastland, M and Spieghalter, D. The Norm Chronicles.

# January 2022 Mortality Risk from COVID Infection

| Age   | Unvaccinated     | Not boosted | Boosted |  |  |  |
|-------|------------------|-------------|---------|--|--|--|
| 0-4   | 227              | 1           | -       |  |  |  |
| 5-17  | Data unavailable |             |         |  |  |  |
| 18-49 | 404              | 90          | 48      |  |  |  |
| 50-64 | 4994             | 1033        | 516     |  |  |  |
| 65+   | 28978            | 15489       | 6023    |  |  |  |

Credit: Katelyn Jetelina, PhD, MPH

## Child Hospitalization Rate

#### Risk of hospitalization in unvaccinated children

| Age     | RSV (per 100,000)* | Flu (per 100,000)* | COVID-19 (per 100,000)** |
|---------|--------------------|--------------------|--------------------------|
| <1 year | 2381               | 181                | 89                       |
| 1       | 710                | 86                 |                          |
| 2       | 395                | 62                 |                          |
| 3       | 211                | 48                 |                          |
| 4       | 111                | 41                 |                          |
| 5-6     | 72                 | 40                 | 32                       |
| 7-11    | 36                 | 23                 |                          |
| 12-17   | 39                 | 17                 | 66                       |

<sup>\*</sup>Averaged across years 2003-2010

Table created by Katelyn Jetelina/YLE, based on data from two sources: RSV/Flu from Goldstein et al and COVID19 from CDC's COVIDNet.



<sup>\*\*</sup>December 2020-January 2022

## Have the goalposts shifted?

- No! Triggers for widespread public health measures always dependent on a number of factors:
  - Severity of illness associated with disease
  - ► Ability for individuals to protect themselves
  - Likelihood that absence of public health measures results in overwhelming health care infrastructure
- With declining severity of illness, vaccination and widespread availability of respiratory protection, and declining impact on health care infrastructure, focus shifts to the individual.

## So what will the epidemiologist do?

- ▶ 6 and 8 year children in public school
- ▶ Wife, 35
- Frequent contact with in-laws in their 60s and grandparents-in-law in 80s
- No major comorbidities
- All members of family up to date with vaccinations
- Wife had COVID in June, no in-house transmission



## So what will the epidemiologist do?

- ▶ When schools stopped requiring masking, I let my kids unmask
  - ▶ When schools recommend masking due to COVID outbreaks, I have my kids mask
- When county mandates ceased, I unmasked in public settings (NOT HEALTHCARE SETTINGS)
- We stopped avoiding experience-based activities or trips in January 2022
  - Skiing January 2022
  - NHL All Star Game in Las Vegas and Super Bowl in LA in February 2022
  - Iceland in June 2022
  - England in July/August 2022
  - Boston last week
- When >3 months from booster or infection, we mask at certain points during travel. Otherwise, mostly unmasked

#### When will we need boosters?

- Depends on many factors:
  - Community transmission rates
  - Circulating variants
    - ► Severity of illness associated with variant
    - ▶ VE against variant
  - Individual risk factors for severe disease
- Bivalent boosters available now and FDA has indicated their plan to do similar variant modifications annually as we do for flu
- Intranasal vaccines, dual flu/COVID vaccines, and universal coronavirus vaccines all in development

# Remaining Vulnerabilities and Missed Opportunities

- Need for a centralized data collection mechanism for prospective surveillance
  - Agencies are trying to maintain and expand reporting mechanisms, but legal aspects are challenging
- Politicization of pandemic has significantly reduced trust in public health infrastructure
- ► Lack of political will to adapt to changing circumstances in many localities
- We tend to be fairly prone to amnesia

## Silver Lining

- Infrastructure developed for rapid production of variant-specific vaccines and therapeutics
- ▶ New fields of pan-organism vaccine development making significant headway
- Broader recognition of the need to protect others when experiencing a respiratory viral illness
- Horizontal impact of mRNA vaccines

## Summary

- COVID is here to stay, but COVID-22 is not COVID-19
- Vaccination is and will remain the best tool to provide individual and public health benefit
- Dropping mask mandates doesn't mean everyone should stop wearing masks in every situation or stop caring about COVID
- Changing rules doesn't mean "flip-flopping", it's how we're supposed to react to a dynamic environment
- We need to advocate for enhancing our public health infrastructure and break down the barriers that prevent coordinated federal efforts
- This will not be the last pandemic

# Questions?

